首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 128 毫秒
1.
Environmental pollution by metals is a recognized problem worldwide. As a result of the exposure to this pollution, marine species may bioaccumulate metals in both muscle and fishbone, as has been demonstrated in some species of tuna. The objective of this study has been the development and optimization of an inductively coupled plasma-mass spectrometry (ICP-MS) based method, which allows the quantification of 21 elements including priority pollutants and biologically essential elements (B, Mg, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Pd, Cd, Ba, La, Hg and Pb) in muscle and in the first spine of the first dorsal fin of albacore (Thunnus alalunga) and bluefin tuna (Thunnus thynnus). A microwave-assisted digestion has been developed for sample treatment, which has been evaluated using isotope dilution analysis (IDA) of Cr, Se, Cd, Ba and Pb. Evaluation of the analytical method in terms of sensitivity (LOQ between 0.002 and 1?mg?kg?1), accuracy and precision within and between days (CV?<?11.3%) has also been conducted. The developed method has allowed information to be obtained on levels of these metals in both matrices. The correlation analyses performed for each of the metals in both matrices shows a positive linear relationship between the concentrations in muscle and fishbone for Zn, Se, Rb, Cd, As and Hg, which could be due to a higher bioaccumulation of these elements in muscle as it is concluded from the low spine/muscle ratios observed for these elements. The 34 specimens of tuna analyzed show that while the levels of Pb, Cd, Ni, Zn, Cu and Cr in muscle are below the limits set by the WHO/FAO, EC and the US-EPA, Hg shows higher concentration than the limits set by the EC in four samples, indicating a potential risk to human health.  相似文献   

2.
An inductively coupled plasma mass spectrometry (ICP-MS) method for elemental impurities determination in components used for parenteral nutrition solutions is proposed. Solutions of amino acids (10% m/v), glucose (50% m/v) and lipids (20% m/v) were analyzed. Arsenic, Cd, Cu, Pb and Mo were determined by ICP-MS operated at standard mode, whilst pneumatic nebulization was used for introducing the sample solution into the ICP. Mercury was determined using cold vapor generation (CVG) coupled to ICP-MS. Chromium, Mn, Ni and V were determined by means of dynamic reaction cell-inductively coupled plasma mass spectrometry (DRC-ICP-MS), while ammonia was used as reaction gas. The operational conditions of each technique were optimized in order to achieve better sensitivity, precision and accuracy. The influence of the sample matrix, mainly carbon, on all investigated elements was evaluated. The use of DRC was effective to reduce interferences on Cr, Mn, Ni and V determination. The other investigated elements (As, Cd, Cu, Pb, Mo and Hg) were determined directly in the samples, which were properly diluted. Results obtained were in good agreement (between 96 and 103%) with certified values (certified reference materials of water were analyzed), at the same time as the relative standard deviation was lower than 5%. Sample throughput was relatively high (up to 30 samples of components used for parenteral nutrition solution could be analyzed per hour). In this way, the proposed method can be recommended for routine analysis.  相似文献   

3.
A sol-gel zirconia coating was developed for the preconcentration/separation of trace Cr, Cu, Cd and Pb by capillary microextraction, and the adsorbed analytes were on-line eluted for detection using inductively coupled plasma mass spectrometry (ICP-MS). By immobilizing sol-gel zirconia on the inner surface of a fused-silica capillary, the sol-gel zirconia coating was simply prepared. Its adsorption properties, stability and the factors affecting the adsorption behaviors of Cr, Cu, Cd and Pb were investigated in detail. In the pH range from 7.8 to 10, the zirconia-coated capillary (35 cm x 0.15 mm) is selective towards Cr, Cu, Cd and Pb, and the analyzed ions could be desorbed quantitatively with 0.2 mL of 0.5 mol/L HNO(3) at a rate of 0.2 mL/min. With a consumption of 1.25 mL sample solution, an enrichment factor of 6.25, and detection limits (3sigma) of 9.9 pg/mL Cr, 17.9 pg/mL Cu, 4.5 pg/mL Cd and 3.7 pg/mL Pb were obtained. The precisions for nine replicate measurements of 1 ng/mL Cr, Cu, Cd and Pb were 4.9% Cr, 2.2% Cu, 2.0% Cd and 3.2% Pb (RSD), respectively. The proposed procedure has been applied to the determination of Cr, Cu, Cd and Pb in human urine, which was subjected to microwave-assisted digestion prior to analysis, and the recoveries for these elements were 89.2-101.8%. In order to validate the developed procedure, a NIES No.10-a Rice Flour-Unpolished certified reference material and a BCR No. 184 Bovine Muscle certified reference material were analyzed, and the results are in good agreement with the certified values.  相似文献   

4.
A microwave-assisted digestion procedure using HNO3, HF, and H2O2 has been developed for analysis of elements in ambient particulate matter (PM). The samples are collected on cellulose filters and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). The ICP-MS is calibrated with external standards, and recovery of analytes is tested with NIST SRM 1648 Urban Dust. This method has been used to quantify the airborne concentrations of a large number of elements, including Ag, As, Ba, Be, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, K, Li, Mg, Mn, Mo, Ni, Pb, Rb, Se, Sb, Sr, Ti, Tl, V, and Zn. For the majority of these elements, recovery of the NIST SRM is within 15% of the certified values.  相似文献   

5.
Ultrasonic slurry sampling electrothermal vaporization isotope dilution inductively coupled plasma mass spectrometry (USS-ETV-ID-ICP-MS) has been applied to the determination of Cd, Hg and Pb in coal fly ash samples. Thioacetamide (TAC) was used as the modifier. Since the sensitivities of the elements studied in coal fly ash slurry and aqueous solution were quite different, isotope dilution method was used for the determination of Cd, Hg and Pb in these coal fly ash samples. The isotope ratios of each element were calculated from the peak areas of each injection peak. This method has been applied to the determination of Cd, Hg and Pb in NIST SRM 1633a coal fly ash reference material and a coal fly ash sample collected from Kaohsiung area. Analysis results of reference sample NIST SRM 1633a coal fly ash agreed satisfactorily with the certified values. The other sample determined by isotope dilution and method of standard additions was agreed satisfactorily. Precision was better than 6% for most of the determinations and accuracy was better than 4% with the USS-ETV-ID-ICP-MS method. Detection limits estimated from standard addition curves were in the range of 24–58, 6–28 and 108–110 ng g−1 for Cd, Hg and Pb, respectively.  相似文献   

6.
建立电感耦合等离子体质谱法(ICP-MS)测定不同产地和批次地龙药材中铅(Pb)、砷(As)、汞(Hg)、镉(Cd)、铜(Cu)5种重金属元素的含量.采用微波消解进行样品前处理,结果表明:5种重金属元素的线性关系良好(r≥0.999 6),平均回收率在92.8%~95.2%范围内,方法的检出限在0.001 0~0.092 mg/kg范围内.方法灵敏度高,重复性好,方法准确.不同产地和批次的样品中5种重金属元素均有检出.地龙药材中Pb、As、Hg、Cd、Cu这5种重金属元素需要重点监控.  相似文献   

7.
An isotope dilution mass spectrometric (IDMS) method with the thermal ionization (TI) technique has been developed for the determination of trace impurities of Cr, Fe, Ni, Cu, Zn, Ag, Cd, Tl, Pb, Th, and U in high-purity HF (50% by weight) used in the semiconductor industry. The evaporation step of the HF solution was carried out in an apparatus which did not significantly contribute to contaminations of the heavy metals to be analysed. This apparatus allowed fast evaporation of the HF solution of up to 200 ml/h and therefore also a fast trace heavy metal/matrix separation was carried out. The evaporation step was also used in connection with inductively coupled plasma mass spectrometry (ICP-MS) when applying the isotope dilution technique and an external calibration for quantification, respectively. The detection limits for TI-IDMS were (in pg/g): Cr=30, Fe=400, Ni=70, Cu=20, Zn=1100, Ag=70, Cd=10, Tl=1, Pb=16, Th=3, and U=1. With ICP-MS in combination with the evaporation step, detection limits of less than 50 pg/g have been achieved for Cr, Ni, and Zn and of <5 pg/g for the other elements except Fe, which could not be determined in concentrations less than 100 ng/g. On the other hand, the detection limits were much higher when the HF matrix was not removed before measuring by ICP-MS. A comparison of the different ICP-MS methods (isotope dilution technique and external calibration for both HF evaporated samples and those with HF matrix) with the results of TI-IDMS has been carried out. An excellent agreement was achieved between the results of TI-IDMS and the two ICP-MS methods using the HF evaporation step, whereas the ICP-MS techniques without HF evaporation essentially deviated from these results. Fe was the only trace element of all investigated heavy metals which could only be analysed by TI-IDMS in high purity HF in a concentration of about 3 ng/g. Although ICP-MS with isotope dilution and external calibration resulted in comparable analytical data, the ICP-IDMS method has some practical advantages such as time-saving and more reliable results.  相似文献   

8.
Two reference materials, at relatively low and high concentrations (GBW08404 and GBW08405), for analysis of the mass fractions of Cd, Cr, Hg and Pb in polypropylene were developed. The reference materials were prepared by doping blank polypropylene base material with Cd, Cr, Hg and Pb in the form of oxides, salts or pigments. Homogeneity and stability studies were performed by inductively coupled plasma mass spectrometry. The certification of the four analytes was carried out by isotope-dilution mass spectrometry (IDMS) with microwave-assisted digestion. Combined uncertainties were calculated from the IDMS uncertainty evaluation budget and the uncertainty of the homogeneity. The mass fractions of Cd, Cr, Hg and Pb of the two certified reference materials (CRMs) were from 8 to 1,000 mg kg−1. The two samples were also used in an interlaboratory comparison scheme in which National Institute of Metrology, China, National Metrological Institute of Japan and Korea Research Institute of Standards and Science participated. The agreement of the comparison results proved that the certification procedure of the CRMs is valid and that the certified values of Cd, Cr, Hg and Pb are accurate and reliable.  相似文献   

9.

In the International Measurement Evaluation Programme (IMEP-12) comparison, a synthetically prepared water sample was offered to the analytical laboratories to perform measurements of As, B, Cd, Cr, Cu, Fe, Mg, Mn, Ni and Pb. The choice of elements to be measured was based on EU legislation, which the comparison was aiming to support. As to the IMEP policy, the laboratories’ results were presented according to the certified/assigned reference values established by several reference laboratories all around the world. The performed certification campaign is described in detail in this paper. Isotope dilution mass spectrometry (IDMS) was applied as a primary method of measurement (PMM), whenever possible, to achieve SI-traceable results. Apart from IDMS for reference measurements of some elements, k o-neutron activation analysis (k o-NAA) and external calibration (Ext-Calib) using inductively coupled plasma-mass spectrometry (ICP-MS) were applied. The reference values were characterised as “certified” (for B, Cd, Cr, Cu, Fe, Mg, Ni and Pb) or “assigned” (for As and Mn) according to the IMEP policy. Measurement uncertainty of the certified/assigned reference values was calculated according to the ISO/BIPM guide using the specialised software GUM Workbench.

  相似文献   

10.
In the International Measurement Evaluation Programme (IMEP-12) comparison, a synthetically prepared water sample was offered to the analytical laboratories to perform measurements of As, B, Cd, Cr, Cu, Fe, Mg, Mn, Ni and Pb. The choice of elements to be measured was based on EU legislation, which the comparison was aiming to support. As to the IMEP policy, the laboratories’ results were presented according to the certified/assigned reference values established by several reference laboratories all around the world. The performed certification campaign is described in detail in this paper. Isotope dilution mass spectrometry (IDMS) was applied as a primary method of measurement (PMM), whenever possible, to achieve SI-traceable results. Apart from IDMS for reference measurements of some elements, k o-neutron activation analysis (k o-NAA) and external calibration (Ext-Calib) using inductively coupled plasma-mass spectrometry (ICP-MS) were applied. The reference values were characterised as “certified” (for B, Cd, Cr, Cu, Fe, Mg, Ni and Pb) or “assigned” (for As and Mn) according to the IMEP policy. Measurement uncertainty of the certified/assigned reference values was calculated according to the ISO/BIPM guide using the specialised software GUM Workbench.  相似文献   

11.
For the first time in the International Measurement Evaluation Programme (IMEP)-14, a sediment sample was offered to analytical laboratories to perform measurements of As, Cd, Cr, Cu, Fe, Pb, Hg, Ni, U and Zn. In line with IMEP policy, the results were presented according to the certified / assigned reference values established by several reference laboratories around the world. The certification campaign is described in detail. Isotope dilution mass spectrometry was applied as a primary method of measurement, whenever possible, to achieve SI-traceable results. For reference measurements of As, Fe, Hg and Zn, k0-neutron activation analysis and Zeeman atomic absorption spectrometry were applied. The reference values (ranges) were characterised as ”certified” (for Cd, Cr, Pb, Ni and U) or ”assigned” (for As, Cu, Fe, Hg and Zn) according to IMEP policy. The measurement uncertainty of the certified / assured reference values was calculated according to the ISO/BIPM Guide. Received: 7 June 2001-10-27 Accepted: 19 August 2001  相似文献   

12.
Investigations of microwave assisted drying of sample materials and microwave assisted evaporation of aqueous sample solutions and acidic digestion residues were accomplished by means of special rotors for the microwave digestion system MULTIWAVE. To check the results obtained by microwave assisted drying, the samples were also conventionally dried at 105 degrees C in an oven. The following samples have been dried: 10 g each of meat, fish, apple, cucumber, potato, mustard, yogurt, clay and marl; 1 g each of certified reference material TORT 2 (lobster hepatopancreas), BCR 278 (mussel tissue) and BCR 422 (cod muscle); 500 g garden mould. Microwave assisted drying takes 40 min for organic samples and 30 min for inorganic material. Important is a slow increase of microwave power during the first 20 min. The results agree well with conventional drying at 105 degrees C. Losses of As, Se and Hg have been investigated for 3 CRMs. Only Se shows losses in the range of 20%. Losses of As, Be, Cd, Co, Cr, Cu, Fe, Hg, Li, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sr, Ti, Tl, V and Zn after evaporation of aqueous samples and acidic solutions after wet digestion, respectively, have been investigated. 50 mL aqueous solution was evaporated almost to dryness within 25 min. The recovery of Hg is 40-50%, of Se 90-95% and of the other elements 97-102%. 0.2 g each of TORT 2, BCR 278 and BCR 422 have been digested with 4 mL nitric acid and 1 mL hydrochloric acid by means of the microwave digestion system MULTIWAVE. The digestion residue was evaporated almost to dryness and dissolved again in 10 mL diluted nitric acid. In this case no element losses have been observed. The measured concentration of As, Cd, Cu, Fe, Mn, Hg, Pb, Mo, Ni, Se, Sr, V and Zn agree very well with the certified values. An important prerequisite for good recoveries is not to evaporate the solutions to complete dryness.  相似文献   

13.
Wang J  Nakazato T  Sakanishi K  Yamada O  Tao H  Saito I 《Talanta》2006,68(5):1584-1590
A microwave digestion method with HNO3 alone was conducted at a temperature as high as 250 °C for determination of 19 trace elements (Li, Be, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Cd, Cs, Ba, Hg, and Pb) in coal jointly by inductively coupled plasma optical emission spectrometry (ICP-OES), inductively coupled plasma mass spectrometry (ICP-MS), and flow injection ICP-MS (FI-ICP-MS). The validity of determination was assessed by using three standard coals, SRM 1632c, BCR 180, and SARM 19. It was found that the high-temperature digestion led to an extensive decomposition of the organic matrix and clay in coal, and no dissolved and solid carbon remained in the final solution after evaporation. Good recoveries were observed for all trace elements in three coals, with the exception of V, Rb, and Cs in high-ash SARM 19. Additionally, FI-ICP-MS combined with the present digestion without evaporation pretreatment was proved to be a rapid and efficient approach for determination of ultra-trace elements such as Se, Cd, and Hg in coal.  相似文献   

14.
Most of the analytical techniques used to quantify elements associated with solid samples suffer from high detection limits and cannot be used for trace elements in biomass samples, particularly when only 20 mg are available for analysis. Inductively coupled plasma mass spectrometry (ICP-MS) can achieve detection limits of parts-per-trillion with liquid sample introduction by solution nebulisation. This technique was therefore tested with two standard biomass reference materials: oriental tobacco leaves and cabbage leaves. Two preparations successfully used on coal standards were used to digest the solid samples: a total digestion method (wet ashing digestion) and a partial leaching (microwave extraction). The concentrations of up to seventeen elements (As, Ba, Be, Cd, Co, Cr, Cu, Ga, Mn, Mo, Ni, Pb, Sb, Se, Sn, V and Zn) were measured after the two preparations. The accuracy and sensitivity of the measurements improved when the dilution factor decreased from 5000 to 1000 and to 500. Since the proportion of mineral matter in biomass samples is small (5%), the microwave digestion extracted elements that are generally not completely extracted from coal samples (e.g. Sb). However, some trace element concentrations were below the limit of quantification after microwave extraction, even with a reduced dilution factor (As, Se and Mo) and could not be quantified. A fuel oil was also digested. The trace element concentrations were very low (between 28 and 0.1 microgram g(-1)) but acceptable results were obtained by applying a dilution factor of 100. Only six elements in the fuel oil (As, Ba, Co, Ni, Se and V) had certified or indicated values. Factors affecting the accuracy and sensitivity of the analyses are discussed. The reproducibility of analysis of the tobacco leaf standard was checked over a period of nine months by both digestion methods. The wet ashing method gave acceptable reproducibility for Ba, Cd, Co, Cu, Ga, Mn, Mo, Ni, Pb, V and Zn but poor precision for Cr, Se and Sn and showed evidence of residual chloride interference for As. The microwave extraction gave good reproducibility for As, Ba, Cd, Co, Cr, Cu, Mo, Ni and Zn but poor precision for Se and low recoveries for Ga, Mn, Sn and V. In spite of the small quantities of material analysed, it proved possible to determine the trace elements at levels down to 0.1 microgram g(-1) in the reference materials.  相似文献   

15.
CCD-ICP-AES内标法同时测定化肥中12种有害元素   总被引:1,自引:0,他引:1  
研究了采用CCD-ICP-AES同时测定化肥中As、Cd、Co、Cr、Cu、Hg、Mo、Ni、Pb、Sb、Se和Zn等12种有害元素的方法.采用微波消解法处理样品,加入Y作为内标,消除了化肥基体对测定结果的干扰效应.方法对化肥中各元素的测定回收率在81.6%~120%之间,测定精密度在0.7%~13.8%之间.用该法测定了两种国家标准物质.  相似文献   

16.
建立微波消解-电感耦合等离子体发射光谱(ICP-OES)测定汽车涂料中Pb,Cr,Se,Ba,Sb,As,Cd,Hg含量的方法。以HNO_3-H_2O_2(体积比为4∶1)混合酸消解样品,各元素分析谱线:Pb 220.353 nm,Cr 267.716 nm,Se196.090 nm,Ba 233.527 nm,Sb 217.581 nm,As 189.042 nm,Cd 228.802 nm,Hg 184.950 nm。8种元素测定结果的相对标准偏差为2.02%~12.94%(n=6);对白色、蓝色、红色汽车漆样品进行加标回收试验,Pb,Cr,Se,Ba,As,Cd,Hg,的加标回收率为81.26%~99.79%,Sb的回收率为62.43%~87.61%。该方法快速、简便,精密度、准确度较高,可用于汽车涂料中重金属含量的监控。  相似文献   

17.
Semiquantitative analysis with accuracy of ±30 to 50% is a valuable tool for rapid screening of samples prior to quantitative determination of trace metals. In this study semiquantitative analysis software available with commercial inductively coupled plasma–mass spectrometry (ICP-MS) instrumentation is applied for rapid multielemental analysis, and the accuracy and precision of this semiquantitative analysis approach is evaluated with biological certified reference materials. Samples were prepared by high-pressure, high-temperature nitric acid vapor-phase digestion. For most elements the measured semiquantitative results are in the range of the certified values. With appropriate analyte solution dilution, the measured concentrations of the major elements (e.g., Ca) also agree with certified values. The accuracy is within ±10% for 28 element determinations that include 16 individual elements (Ag, As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Rb, Sb, Sr, Tl, and Zn) and ±20% for 54 element determinations that include three more elements (Mg, V, and U) in eight certified reference materials including water. The method precision is 11 ± 11% (relative standard deviation,n= 65).  相似文献   

18.
Inductively coupled plasma-mass spectrometry (ICP-MS) and neutron activation analysis (NAA) were employed in the determination of heavy metal concentrations in water, plant and sediment samples to assess the extent of heavy metal pollution in a river system which is located within an industrial zone. Elemental concentrations of As, Pb, Hg, Cr, Cu, Cd, Ni and Zn were measured in the samples. Statistical analysis was performed on the data obtained to look for trends in the pollution pattern of these elements on the river system. The trend in concentrations of heavy metals pollution in water samples is in the order of Zn > Cu > Ni > Cr > As > Pb > Hg > Cd, whereas in plants the order is Zn > Cr > Cu > Pb > Ni > As > Hg > Cd and in sediments Zn > Cu > Pb > Ni > As > Hg.  相似文献   

19.
Investigations of microwave assisted drying of sample materials and microwave assisted evaporation of aqueous sample solutions and acidic digestion residues were accomplished by means of special rotors for the microwave digestion system MULTIWAVE. To check the results obtained by microwave assisted drying, the samples were also conventionally dried at 105?°C in an oven. The following samples have been dried: 10 g each of meat, fish, apple, cucumber, potato, mustard, yogurt, clay and marl; 1 g each of certified reference material TORT 2 (lobster hepatopancreas), BCR 278 (mussel tissue) and BCR 422 (cod muscle); 500 g garden mould. Microwave assisted drying takes 40 min for organic samples and ¶30 min for inorganic material. Important is a slow increase of microwave power during the first 20 min. The results agree well with conventional drying at 105?°C. Losses of As, Se and Hg have been investigated for ¶3 CRMs. Only Se shows losses in the range of 20%. Losses of As, Be, Cd, Co, Cr, Cu, Fe, Hg, Li, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sr, Ti, Tl, V and Zn after evaporation of aqueous samples and acidic solutions after wet digestion, respectively, have been investigated. 50 mL aqueous solution was evaporated almost to dryness within 25 min. The recovery of Hg is 40–50%, of Se 90–95% and of the other elements 97–102%. 0.2 g each of TORT 2, BCR 278 and BCR 422 have been digested with 4 mL nitric acid and 1 mL hydrochloric acid by means of the microwave digestion system MULTIWAVE. The digestion residue was evaporated almost to dryness and dissolved again in 10 mL diluted nitric acid. In this case no element losses have been observed. The measured concentration of As, Cd, Cu, Fe, Mn, Hg, Pb, Mo, Ni, Se, Sr, V and Zn agree very well with the certified values. An important prerequisite for good recoveries is not to evaporate the solutions to complete dryness.  相似文献   

20.
Current approaches to mercury speciation and total trace element analysis require separate extraction/digestions of the sample. Ecologically important aquatic organisms--notably primary consumers such as zooplankton, polychaetes and amphipods--usually yield very low biomass for analysis, even with significant compositing of multiple organisms. Individual organisms in the lower aquatic food chains (mussels, snails, oysters, silversides, killifish) can also have very low sample mass, and analysis of whole single organisms is important to metal uptake studies. A method for the determination of both methyl Hg and total heavy metal concentrations (Zn, As, Se, Cd, Hg, Pb) in a single, low-mass sample of aquatic organisms was developed. Samples (2 to 50 mg) were spiked with enriched with (201)MeHg and (199)Hg, then leached in 4 M HNO(3) at 55 degrees C for extraction of MeHg. After 16 h, an aliquot (0.05 mL) was removed to determine mercury species (methyl and inorganic Hg) by isotope dilution gas chromatography inductively coupled plasma mass spectrometry (ICP-MS). The leachate was then acidified to 9 M HNO(3) and digested in a microwave at 150 degrees C for 10 min, and total metal concentrations were determined by collision cell ICP-MS. The method was validated by analyzing five biological certified reference materials. Average percent recoveries for Zn, As, Se, Cd, MeHg, Hg(total) and Pb were 99.9%, 103.5%, 100.4%, 103.3%, 101%, 97.7%, and 97.1%, respectively. The correlation between the sum of MeHg and inorganic Hg from the speciation analysis and total Hg by conventional digestion of the sample was determined for a large sample set of aquatic invertebrates (n = 285). Excellent agreement between the two measured values was achieved. This method is advantageous in situations where sample size is limited, and where correlations between Hg species and other metals are required in the same sample. The method also provides further validation of speciation data, by corroborating the sum of the Hg species concentrations with the total Hg concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号