首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 The technical basis and system set-up of a dual-plane stereoscopic particle image velocimetry (PIV) system, which can obtain the flow velocity (all three components) fields at two spatially separated planes simultaneously, is summarized. The simultaneous measurements were achieved by using two sets of double-pulsed Nd:Yag lasers with additional optics to illuminate the objective fluid flow with two orthogonally linearly polarized laser sheets at two spatially separated planes, as proposed by Kaehler and Kompenhans in 1999. The light scattered by the tracer particles illuminated by laser sheets with orthogonal linear polarization were separated by using polarizing beam-splitter cubes, then recorded by high-resolution CCD cameras. A three-dimensional in-situ calibration procedure was used to determine the relationships between the 2-D image planes and three-dimensional object fields for both position mapping and velocity three-component reconstruction. Unlike conventional two-component PIV systems or single-plane stereoscopic PIV systems, which can only get one-component of vorticity vectors, the present dual-plane stereoscopic PIV system can provide all the three components of the vorticity vectors and various auto-correlation and cross-correlation coefficients of flow variables instantaneously and simultaneously. The present dual-plane stereoscopic PIV system was applied to measure an air jet mixing flow exhausted from a lobed nozzle. Various vortex structures in the lobed jet mixing flow were revealed quantitatively and instantaneously. In order to evaluate the measurement accuracy of the present dual-plane stereoscopic PIV system, the measurement results were compared with the simultaneous measurement results of a laser Doppler velocimetry (LDV) system. It was found that both the instantaneous data and ensemble-averaged values of the stereoscopic PIV measurement results and the LDV measurement results agree well. For the ensemble-averaged values of the out-of-plane velocity component at comparison points, the differences between the stereoscopic PIV and LDV measurement results were found to be less than 2%. Received: 18 April 2000/Accepted: 2 February 2001  相似文献   

2.
This paper studies the flow field of a particular fluid-structure interaction phenomenon—the continuous angular oscillation of a centrally pivoted equilateral triangular cylinder (prism), under uniform two-dimensional incompressible flow. Dye flow visualization of a 30 cm long and 10 cm wide cylinder in a two-dimensional water tunnel was conducted. Under a uniform incoming flow of 7.5 cm/s, the cylinder oscillated continuously after an initial perturbation. On the windward side of the cylinder, a vortex was formed at the sharp edges of the cylinder during the initial phase, whereas on the leeward side, the flow stayed attached. The phase-averaged particle image velocimetry (PIV) measurements are also presented. PIV results show the interchange of flow patterns from that over a flat plate to flow past a sharp edge and vice versa.  相似文献   

3.
The feasibility of simultaneous measurements of the instantaneous velocity fields of gaseous and liquid phase is demonstrated in a laminar, unsteady two-phase flow. Thus, the instantaneous relative velocity field can be measured in such media. This is achieved by combining Particle Image Velocimetry (PIV) and a gas-phase velocimetry technique, which is based on laser-induced fluorescence (LIF) from a gaseous tracer. The wavelength shift of LIF is exploited to separate it from Mie scattering from the liquid phase. The new technique and the PIV measurement system work independently in this approach. Thus, the measurement accuracy and precision of the new technique can be validated by comparing it to the PIV results in regions of the flow field where the relative velocity vanishes. Received: 18 October 1998/Accepted: 16 October 1999  相似文献   

4.
Magnetic resonance velocimetry (MRV) measurements are performed in a 1:1 scale model of a single-cylinder optical engine to investigate the volumetric flow within the intake and cylinder geometry during flow induction. The model is a steady flow water analogue of the optical IC-engine with a fixed valve lift of $9.21$  mm to simulate the induction flow at crank-angle $270^{\circ }$ bTDC. This setup resembles a steady flow engine test bench configuration. MRV measurements are validated with phase-averaged particle image velocimetry (PIV) measurements performed within the symmetry plane of the optical engine. Differences in experimental operating parameters between MRV and PIV measurements are well addressed. Comparison of MRV and PIV measurements is demonstrated using normalized mean velocity component profiles and showed excellent agreement in the upper portion of the cylinder chamber (i.e., $y \ge -20$  mm). MRV measurements are further used to analyze the ensemble average volumetric flow within the 3D engine domain. Measurements are used to describe the 3D overflow and underflow behavior as the annular flow enters the cylinder chamber. Flow features such as the annular jet-like flows extending into the cylinder, their influence on large-scale in-cylinder flow motion, as well as flow recirculation zones are identified in 3D space. Inlet flow velocities are analyzed around the entire valve curtain perimeter to quantify percent mass flow rate entering the cylinder. Recirculation zones associated with the underflow are shown to reduce local mass flow rates up to 50 %. Recirculation zones are further analyzed in 3D space within the intake manifold and cylinder chamber. It is suggested that such recirculation zones can have large implications on cylinder charge filling and variations of the in-cylinder flow pattern. MRV is revealed to be an important diagnostic tool used to understand the volumetric induction flow within engine geometries and is potentially suited to evaluate flow changes due to intake geometry modifications.  相似文献   

5.
This paper describes a compressible Large Eddy Simulation (LES) used to investigate cyclic variations for nonreacting flow in an optical single cylinder engine setup. The simulated operating point is part of a large experimental database designed to validate LES for cycle-to-cycle prediction, and constitutes a first step towards the realization of fired operating points. The computational domain covers almost the whole experimental setup (intake and exhaust plenums, intake and exhaust ducts, cylinder) to account for acoustic phenomena. The assessment of the computation is performed in two regions of the domain: the intake and exhaust duct predictions are compared to the results of a Helmholtz solver and the experiment (pressure transducers and Particle Image Velocimetry (PIV)) while the in-cylinder dynamics are compared to PIV measurements. The ability of the developed methodology to capture the correct level of cycle-to-cycle variations is demonstrated considering in-cylinder pressure and velocity fields predictions. Cycle-to-cycle variations in velocity are highlighted and localized using a proper orthogonal decomposition analysis.  相似文献   

6.
PIV measurements of the near-wake behind a sinusoidal cylinder   总被引:2,自引:0,他引:2  
The three-dimensional near-wake structures behind a sinusoidal cylinder have been investigated using a particle image velocimetry (PIV) measurement technique at Re=3,000. The mean velocity fields and spatial distributions of ensemble-averaged turbulence statistics for flows around the sinusoidal and corresponding smooth cylinders were compared. The near-wake behind the sinusoidal cylinder exhibited pronounced spanwise periodic variations in the flow structure. Well-organized streamwise vortices with alternating positive and negative vorticity were observed along the span of the sinusoidal cylinder. They suppress the formation of the large-scale spanwise vortices and decrease the overall turbulent kinetic energy in the near-wake of the sinusoidal cylinder. The sinusoidal surface geometry significantly modifies the near-wake structure and strongly controls the three-dimensional vortices formed in the near-wake.  相似文献   

7.
Experiments have been conducted to investigate the two-degree-of-freedom vortex-induced vibration (VIV) response of a rigid section of a curved circular cylinder with low mass-damping ratio. Two curved configurations, a concave and a convex, were tested regarding the direction of the flow, in addition to a straight cylinder that served as reference. Amplitude and frequency responses are presented versus reduced velocity for a Reynolds number range between 750 and 15 000. Results for the curved cylinders with concave and convex configurations revealed significantly lower vibration amplitudes when compared to the typical VIV response of a straight cylinder. However, the concave cylinder showed relatively higher amplitudes than the convex cylinder which were sustained beyond the typical synchronisation region. We believe this distinct behaviour between the convex and the concave configurations is related to the wake interference taking place in the lower half of the curvature due to perturbations generated in the horizontal section when it is positioned upstream. Particle-image velocimetry (PIV) measurements of the separated flow along the cylinder highlight the effect of curvature on vortex formation and excitation revealing a complex fluid–structure interaction mechanism.  相似文献   

8.
The applicability of the particle image velocimetry (PIV) and the background-oriented schlieren (BOS) techniques in the high-enthalpy shock tunnel G?ttingen of the German Aerospace Center, DLR is demonstrated. As a part of this feasibility study two different experiments are performed. The velocity field past a wedge in a Mach 6 flow at a total specific enthalpy of 1.5 MJ/kg is determined by means of PIV and the results are compared to numerical predictions. The BOS technique is applied to investigate the density field in the shock layer of a sphere at 12 and 22 MJ/kg total specific enthalpies. Using a ray tracer method, the BOS results are compared to the data obtained by corresponding numerical computations.  相似文献   

9.
The flow around a circular cylinder with a cross-section variation is experimentally investigated. Particle Image Velocimetry (PIV) is used to scrutinize the interaction of the cylinder’s wall with its near wake. The Reynolds number based on the cylinder’s diameter and freestream velocity is 80 × 103, corresponding to the upper subcritical flow regime. At a forcing Strouhal number of St f = 0.02, the maximum vorticity level around the cylinder is reduced by more than 50% as compared to its uncontrolled value. The topology of the bulk flow confined between the primary vortical structure and the cylinder surface is modified resulting in substantial drag reduction.  相似文献   

10.
Experiments were conducted in a water flume using Particle Image Velocimetry (PIV) to study the evolution of the vortical structures in the wakes of four types of screen cylinders at a Reynolds number of about 3200. The results were compared with that of a bare cylinder. The screen cylinders were made of stainless steel screen meshes of various porosities (37%, 48%, 61% and 67%) rolled into cylindrical shapes. Smoke wire flow visualisations in a wind tunnel were also conducted in support of the PIV tests. Depending on the porosity of the screen mesh, two vortex formation mechanisms for the screen cylinder wakes were identified. One was associated with wake instability and the other was associated with shear-layer (Kelvin-Helmholtz) convective instability which involved merging through pairing and tripling of small-scale vortices within the shear layers. The former was responsible for the formation of large-scale vortices in the bare cylinder and the screen cylinder wakes with 37% and 48% porosities, while the latter was responsible for the screen cylinder wakes with 61% and 67% porosities. The results also showed that with increasing porosity, the vortex formation region was extended farther downstream and the Reynolds shear stress, the Turbulent Kinetic Energy (TKE) and vortex intensity were decreased constantly.  相似文献   

11.
Instantaneous planar pressure determination from PIV in turbulent flow   总被引:2,自引:0,他引:2  
This paper deals with the determination of instantaneous planar pressure fields from velocity data obtained by particle image velocimetry (PIV) in turbulent flow. The operating principles of pressure determination using a Eulerian or a Lagrangian approach are described together with theoretical considerations on its expected performance. These considerations are verified by a performance assessment on a synthetic flow field. Based on these results, guidelines regarding the temporal and spatial resolution required are proposed. The interrogation window size needs to be 5 times smaller than the flow structures and the acquisition frequency needs to be 10 times higher than the corresponding flow frequency (e.g. Eulerian time scales for the Eulerian approach). To further assess the experimental viability of the pressure evaluation methods, stereoscopic PIV and tomographic PIV experiments on a square cylinder flow (Re D  = 9,500) were performed, employing surface pressure data for validation. The experimental results were found to support the proposed guidelines.  相似文献   

12.
In this work we test a methodology for PIV measurements when a large field of view is required in planar confined geometries. Using a depth of field larger than the channel width, we intend to measure the in-plane variations of the velocity of the fluid averaged through the width of the channel, and we examine in which operating conditions this becomes possible. Measurements of the flow through a narrow channel by PIV are challenging because of the strong velocity gradients that develop between the walls. In particular, all techniques that use small particles as tracers have to deal with the possible migration of the tracers in the direction perpendicular to the walls. Among the complex mechanisms for migration, we focus on the so called Segré-Silberberg effect which can lead to transverse migration of neutrally buoyant tracers of finite size. We report experimental PIV measurements in a Hele-Shaw cell of 1 mm gap, which have been carried out by using neutrally buoyant tracers of size around 10 μm. By considering steady flows, we have observed, in particular flow regimes, the effect of an accumulation of the tracers at a certain distance to the wall due to the so called Segré-Silberberg effect. The particle migration is expected to occur at any Reynolds numbers but the migration velocity depends on the Reynolds number. A significant migration therefore takes place each time the observation duration is large enough compared to the migration time. For a given observation duration, the tracers remain uniformly distributed at low Reynolds numbers whereas they all accumulate at the equilibrium position at large ones. When using volume lighting, the PIV algorithm provides the average velocity of the flow through the gap at low Reynolds number, while it leads to the velocity of the flow at the equilibrium position of the tracers at large Reynolds numbers. By considering unsteady flows, we have observed that the migration does not occur if the timescale of flow variation is short compared to the time required for the parabolic flow to develop across the gap. In this case, there is no transverse velocity gradient and the PIV algorithm provides the fluid velocity. Altogether, these results allow us to propose guidelines for the interpretation of PIV measurements in confined flow, which are based on the theoretical predictions of the tracer migration derived by Asmolov [1].  相似文献   

13.
Flow interaction with a bluff body generates a highly complex flow field and has been the subject of much experimental and theoretical analysis. It has been shown that large eddy simulation (LES) modelling provides a more realistic analysis of the flow for such situations where the large scales of turbulence must be resolved. The inherent small-scale spatial velocity averaging in particle image velocimetry (PIV) is commensurate with the sub-grid scale modelling of LES and, therefore, offers potential as a code refinement technique. To demonstrate this potential, however, PIV must be performed with a temporal resolution of typically kHz and a spatial resolution of sub-mm2 to be relevant for the vast majority of flows of engineering interest. This paper reports the development of a high-speed PIV system capable of operating at 20 kHz with a spatial resolution of 0.9 mm2. This is the combined highest speed, highest resolution PIV data reported to date. The experiment chosen to demonstrate the system is the study of the steady flow interaction with circular and square cross-section obstacles. A Reynolds number of 3,900 is chosen for the cylinder flow to extend the database used by Breuer M. (1998 Int J Heat Fluid 19:512–521) in his extensive LES modelling of this flow. Data presented include a sequence of two-dimensional velocity and vorticity fields, including flow streamlines. Importantly, the random error, inherent in a PIV measurement, is discussed and a formula presented which allows the error to be estimated and regions of the flow identified where LES comparisons would be uncertain.  相似文献   

14.
We present the application of wavefront sensing to particle image velocimetry for three-component (3C), three-dimensional (3D) flow measurement from a single view. The technique is based upon measuring the wavefront scattered by a tracer particle and from that wavefront the 3D tracer location can be determined. Hence, from a temporally resolved sequence of 3D particle locations the velocity vector field is obtained. Two approaches to capture the data required to measure the wavefronts are described: multi-planar imaging using a distorted diffraction grating and an anamorphic technique. Both techniques are optically efficient, robust and compatible with coherent and incoherent scattering from flow tracers. The depth (range) resolution and repeatability have been quantified experimentally using a single mode fiber source representing a tracer particle. The anamorphic approach is shown to have the greatest measurement range and hence was selected for the first proof of principle experiments using this technique for 3D particle imaging velocimetry (PIV) on a sparsely seeded gas phase flow.  相似文献   

15.
Stereoscopic particle image velocimetry   总被引:25,自引:19,他引:6  
Stereoscopic particle image velocimetry (PIV) employs two cameras to record simultaneous but distinct off-axis views of the same region of interest (illuminated plane within a flow seeded with tracer particles). Sufficient information is contained in the two views to extract the out-of-plane motion of particles, and also to eliminate perspective error which can contaminate the in-plane measurement. This review discusses the principle of stereoscopic PIV, the different stereoscopic configurations that have been used, the relative error in the out-of-plane to the in-plane measurement, and the relative merits of calibration-based methods for reconstructing the three-dimensional displacement vector in comparison to geometric reconstruction. It appears that the current trend amongst practitioners of stereoscopic PIV is to use digital cameras to record the two views in the angular displacement configuration while incorporating the Scheimpflug condition. The use of calibration methods has also gained prominence over geometric reconstruction. Received: 15 April 1999/Accepted: 1 February 2000  相似文献   

16.
Tomographic and time resolved PIV measurements were performed to examine the 3D flow topology and the flow dynamic above the upper surface of a low-aspect ratio cylinder at Re ≈ 1 ×  105. This generic experiment is of fundamental interest because it represents flow features which are relevant to many applications such as laminar separation bubbles and turbulent reattachment. At Re  ≈ 1 × 105, laminar separation bubbles arise on the side of the cylinder. Furthermore, on the top of the cylinder a separation with reattachment is of major interest. The tomographic PIV measurement, which allows to determine all three velocity components in a volume instantaneously, was applied to examine the flow topology and interaction between the boundary layer and wake structures on the top of the finite cylinder. In the instantaneous flow fields the tip vortices and the recirculation region becomes visible. However, it is also observed that the flow is quite unsteady due to the large separation occurring on the top of the cylinder. In order to study the temporal behaviour of the separation, time resolved PIV was applied. This technique allows capturing the dynamic processes in detail. The development of vortices in the separated shear layer is observed and in addition regions with different dominant frequencies are identified.  相似文献   

17.
Vortex shedding from a fixed rigid square cylinder in a cross flow was manipulated by perturbing the cylinder surface using piezo-ceramic actuators, which were activated by a feedback hot-wire signal via a proportional–integral–derivative (PID) controller. The manipulated flow was measured at a Reynolds number (Re) of 7,400 using particle image velocimetry (PIV), laser-induced fluorescence (LIF) flow visualisation, two-component laser Doppler anemometry (LDA), hot wires and load cells. It is observed that the vortex circulation, fluctuating streamwise velocity, lift and drag coefficients and mean drag coefficient may decrease by 71%, 40%, 51%, 42% and 20%, respectively, compared with the unperturbed flow, if the perturbation velocity of the cylinder surface is anti-phased with the flow lateral velocity associated with vortex shedding. On the other hand, these quantities may increase by 152%, 90%, 60%, 67% and 37%, respectively, given in-phased cylinder surface perturbation and vortex shedding. Similar effects are obtained at Re=3,200 and 9,500, respectively. The relationship between the perturbation and flow modification is examined, which provides insight into the physics behind the observation.  相似文献   

18.
The results of experiments in which a circular cylinder located near the bottom of a rectangular channel was exposed to transverse statistically stationary turbulent subcritical flow with free surface are presented. The particle image velocimetry (PIV) was used to obtain data on the averaged velocity field near the cylinder. The gradients of the longitudinal velocity component were used to determine the shear stresses on the bottom of the channel. It is shown that the presence of the cylinder in the flow causes considerable averaged vertical velocities and a significant change in the shear stresses on the bottom of the channel.  相似文献   

19.
Application of PIV in a Mach 7 double-ramp flow   总被引:2,自引:0,他引:2  
The flow over a two-dimensional double compression ramp configuration is investigated by means of schlieren visualization, quantitative infrared thermography and particle image velocimetry (PIV) in a short-duration facility producing a free-stream flow at Mach 7. The study focuses upon the accuracy assessment of PIV in the hypersonic flow regime including flow facility effects such as repeatability of test conditions. The solid tracer particles are characterized by means of electron microscopy as well as by measuring the dynamic response across a planar oblique shock wave with PIV. The experiments display a strong variation in the light scattering intensity of the seeded flow over the flow field, due to the large flow compressibility. The mean velocity spatial distribution allows to clearly identify the shock pattern and the main features of the flow downstream of the shocks. However, the spatial resolution is insufficient to determine the wall flow properties. Furthermore the velocity data obtained with the PIV technique allow the determination of the spatial distribution of the Mach number under the hypothesis of adiabatic flow. The double ramp configuration with a variable second compression angle exhibits shock–shock interactions of Edney type VI or V for the lowest and highest ramp angle, respectively. A single heat transfer peak is detected with infrared thermography on the second ramp in case of a type VI interaction while for the type V shock interaction a double heat transfer peak is found. Shock wave angles measured with PIV are in good agreement with theory and the overall flow topology is consistent with schlieren visualization. Also in this respect the results are in agreement with compressible flow theory.  相似文献   

20.
Heat transfer properties vary locally and temporally in internal combustion engines due to variations in the boundary layer flow. In order to characterize the dynamics in the boundary layer, crank-angle resolved high-speed micro particle image velocimetry (μPIV) and particle tracking velocimetry (PTV) have been used for near-wall velocity measurements in a spark-ignition direct-injection single cylinder engine. A 527-nm dual cavity green Nd:YLF laser was used for velocity measurements near the cylinder head wall between the intake and exhaust valves in the tumble mean flow plane parallel to the cylinder axis. A long-distance microscope was used to obtain a spatial resolution of 45 μm. Flow fields were determined from 180 to 490 CAD in the compression and expansion strokes. The data show significant variation in the flow during the compression and expansion strokes and from cycle to cycle. Flow deceleration was observed during the end of the compression that continued during the expansion stroke until 400 CAD when the flow direction reverses. Sub-millimeter-sized vortical structures were observed within the boundary layer over extended periods of time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号