首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new self-calibration method for a fringe-projection based 3D measurement system is proposed. To determine homologous points in the proposed camera/projector configuration, the phase map is converted to the u, v coordinates in the projected image. The projector can conceptually be regarded as camera acting in a reversed mode. Taking the epipolar constraint into account, this approach can allow self-calibration of the fringe projection system. Considering the effect of noise, we propose a nonlinear self-calibrating model. The experimental results show the effectiveness of this approach.  相似文献   

2.
Binary fringe defocused projection can resolve the problem caused by the nonlinear gamma of the projector. Owing to the intersecting axis measurement system, the broadening of the fringe period on the reference plane can cause measurement errors. Non-uniform periodical binary fringe defocused projection is utilized to overcome this problem. After appropriate defocused projection of non-uniform periodical binary fringe, uniform periodical sinusoidal fringe can be obtained on the reference plane. This method can prevent the nonlinear gamma effect and broadening of the fringe period, and filter high harmonics and high-frequency noise. Three-dimensional (3-D) shape measurement experiments of standard flat are performed with four-step phase-shift method. Experimental results demonstrate that the proposed method exhibits high measurement precision. Highly accurate 3-D measurements of large objects can also be performed with the proposed method.  相似文献   

3.
The combination (often referred to as phase-stepping profilometry, PSP) of the fringe projection technique and the phase-stepping method allowed us to retrieve topographic maps of cuticles isolated from the abaxial surface of leaves; these were in turn sampled from an apple tree (Malus domestica) of the variety Golden Delicious. The topographic maps enabled us to assess the natural features on the illuminated surface and also to detect the whole-field spatial variations in the thickness of the cuticle. Most of our attention was paid to retrieve the highly-resolved elevation information from the cuticle surface, which included the trace (in the order of tens of micrometers) left by ribs and veins. We expect that the PSP application for retrieving the cuticle topography will facilitate further studies on the dispersion and coverage of state-of-the-art agrochemical compounds meant to improve the defending properties of the cuticle. Methodological details are provided below.  相似文献   

4.
Lujie Chen  Cho Jui Tay  Yuanhao Huang 《Optik》2005,116(3):123-128
Quality-guided algorithm is a widely used method in phase unwrapping. This paper shows an accurate quality map based on fringe contrast for 3D shape measurement. Phase-shifted fringe patterns are projected onto an object surface by a programmable liquid crystal projector and recorded by a CCD camera. A wrapped phase map and a fringe contrast map are extracted from the deformed fringe patterns by the phase-shifting technique. Guided by the contrast map, the quality-guided unwrapping algorithm minimizes unwanted shadow and non-uniform surface reflectance effects and is able to retrieve a correct surface profile. Validity of the proposed method is tested on a fish model and a cutting tool specimen.  相似文献   

5.
Fringe projection profilometry (FPP) is a powerful method for three-dimensional (3D) shape measurement. However, the measurement accuracy of the existing FPP is often hindered by the distortion of the lens used in FPP. In this paper, a simple and efficient method is presented to overcome this problem. First, the FPP system is calibrated as a stereovision system. Then, the camera lens distortion is eliminated by correcting the captured images. For the projector lens distortion, distorted fringe patterns are generated according to the lens distortion model. With these distorted fringe patterns, the projector can project undistorted fringe patterns, which means that the projector lens distortion is eliminated. Experimental results show that the proposed method can successfully eliminate the lens distortions of FPP and therefore improves its measurement accuracy.  相似文献   

6.
In this paper, an algorithm is proposed which can estimate good fringe orientation and estimate fringe density at the same time. This algorithm accumulates differences along four orientations and then obtains the local orientation and estimates local fringe density according to the differences. The obtained orientation results are more accurate and more robust than the plane-fit method. And it will be shown both theoretically and experimentally that the accumulated differences can estimate fringe density roughly.  相似文献   

7.
A velocity sensing approach using the fringe projection technique is presented. The moving object is projected with a sinusoidal fringe pattern. A CCD camera located at a different view angle observes the projected fringes on the dynamic object. The long exposure time of the CCD camera makes the fringes blurred by linear motion. The blurred fringes provide additional information to describe the depth displacement, and therefore the velocity vector can be identified. There is no need to take multiple-shot measurements to address the change in 3D positions at a sequence of time. Only one-shot measurement is required. Consequently, there is no need to perform image registration. The full-field approach also makes it possible to simultaneously inspect several objects.  相似文献   

8.
This paper describes a comparison of several carrier-removal techniques normally used in fringe projection for surface shape measurement. The performance of various algorithms, including the necessity for manual intervention, the complexity in data recording, and the side effect on measurement accuracy, is evaluated. The applicability of nonlinear carrier removal and the restrictions on the direction of carrier fringe in various algorithms are also investigated in this paper. It is also shown that an advanced algorithm is able to achieve carrier removal with minimal manual intervention and significantly simplify the calibration process of a fringe projection system.  相似文献   

9.
In fringe projection profilometry, background and shadow are inevitable in the image of an object, and must be identified and removed. In existing methods, it is nontrivial to determine a proper threshold to segment the background and shadow regions, especially when the gray-level histogram of the image is close to unimodal, and an improper threshold generally results in misclassification of the object and the background/shadow. In this paper, an adaptive threshold method is proposed to tackle the problem. Different from the existing automatic methods, the modulation-level histogram, instead of the gray-level histogram, of the image is employed to determine the threshold. Furthermore, a new weighting factor is proposed to improve Otsu's method to segment the image with a histogram close to unimodal, and the modulation difference of the object pixels and the background/shadow pixels is intensified significantly by the weighting factor. Moreover, the weighting factor is adaptive to the image. The proposed method outperforms existing methods either in accuracy, efficiency or automation. Experimental results are given to demonstrate the feasibility and effectiveness of the proposed method.  相似文献   

10.
This paper describes the use of optical fringe projection method for 3D surface profile and deformation measurement of micro-components. In this method, sinusoidal linear fringes are projected on a micro-component surface by a grating phase shifting projector and a long working distance microscope (LWDM). The image of the fringe pattern is captured by a high-resolution CCD camera and another LWDM and processed by phase-shifting technique. A simple procedure is described which enables calibration of the optical set-up for subsequent quantitative measurement of micro-components of unknown shapes. This method is relatively simple and accurate, and is capable of conducting fully automated measurements. In this paper, two micro-components, a micro-mirror (0.1 mm×0.1 mm) and a micro-electrode pad are used to demonstrate deformation measurement and microscopic surface contouring.  相似文献   

11.
A new multi-frequency inverse-phase method was proposed to compensate for nonlinear phase errors in fringe projection profilometry and to measure the three-dimensional shape of discontinuous objects. After introducing a phase offset of π/4 into the multi-frequency four-step phase-shifting method the corresponding nonlinear phase error reversed its sign, which allowed the addition of unwrapped phases before and after the phase-offset operation to compensate for the error. For the four-step phase-shifting method, simulation analysis showed that the nonlinear phase error had quadrupled the fringe frequency. Moreover, experimental results verified the feasibility and applicability of the proposed method.  相似文献   

12.
This paper describes the analysis of phase distortion in phase-shifted fringe projection method. A phase distortion occurs when the phase shifting technique is applied to extract the phase values from projected fringe patterns in surface contouring. The phase distortion will induce measurement errors especially in the measurement of micro-components. The cause of such phase distortion is investigated and the influence of phase distortion on the measurement of micro-components is discussed. To eliminate the phase distortion, a continuous wavelet transform (CWT) is employed to extract phase values from object surface modulated fringe patterns. Principle of the proposed CWT phase extraction method is described and experiments are conducted to verify the proposed method. It is shown that by the use of CWT phase extraction method phase distortion induced in conventional phase-shifting technique can be completely eliminated.  相似文献   

13.
Fringe projection profilometry (FPP) is a widely used three-dimensional profile measurement technique. One vital step in this technique is calibration, which determines the system accuracy. The least-squares method, because of its flexibility and simplicity, is commonly used in system calibration for FPP. However, calibration results are affected by the nonlinear gamma of the projector and projection fringe cycle broadening. This paper proposes a new look-up table (LUT) generation method by analyzing the differences between the real and ideal unwrapped phases. The aforementioned problems could then be solved after the phase error is compensated by the LUT. Finally, the validity of the proposed method is demonstrated through experiments, and the accuracy reaches 0.02 mm.  相似文献   

14.
Analysis on 3D object measurement based on fringe projection   总被引:2,自引:0,他引:2  
Xintian Bian  Wenjing Chen 《Optik》2011,122(6):471-474
A coordinate measuring method is presented, which is specially devised to perform the measurement of coordinates with projected fringe techniques of projectors in three dimensions. The system is composed of two parts: one is a target which can move freely in three dimensions, and the other is a stationary two-dimensional array of photodetectors. The mini-projector is tied to the target, and the projected fringe is monitored by the photodetectors. The phase of the photodetectors can be precisely measured with the phase-shifting algorithm, so that, the xyz location of the target can be determined with the geometric model of multilateration using the method of optimization. In this paper, the measuring principle, iterative method, computer simulation and preliminary results are given. The phase-shifting technique has the advantages of high accuracy and noise endurance. The method will provide the basis for follow-up iterative optimization calculation. The experimental results prove that the proposed coordinate measuring method is of high precision.  相似文献   

15.
An improved measurement method and an automatic calibration procedure are proposed for a combined 2D Digital Image Correlation and Fringe Projection system that allows measuring in- and out-of-plane displacement maps with only one image at each deformation stage of a specimen. The proposed method increases the accuracy and range of the out-of-plane displacements by taking into account the divergences of both the projected fringes (uncollimated) and the camera (with non-zero FOV). The calibration is performed automatically by acquiring a sequence of images of a reference plane by displacing perpendicular to it the camera and fringe projector with a motorized translation stage. The acquired images are then used to obtain a fringe function for each pixel and the necessary parameters required for the correction of the in-plane displacements. Furthermore, a closed form expression is obtained that relates the out-of-plane displacements with the shifted phase at each pixel for a given experimental set-up. This expression is in good agreement with the fringe function obtained by fitting a simple 2nd order polynomial to the experimental obtained calibration data. Finally, the polynomial approach is proposed as a fringe function because it avoids the errors in the determination of the required parameters of the theoretical expression as well as some small misalignment or aberration effects.  相似文献   

16.
A novel fringe projection profilometry using a single sinusoidal fringe pattern projected is proposed. Computer-generated sinusoidal fringe and uniform intensity patterns are firstly projected on a testing object by a liquid crystal display projector. The variable reflection intensity of a fringe pattern is then roughly normalized by division operation applied to the grabbed fringe and uniform intensity patterns projected. Fringe intensity is further normalized by employing an interpolation algorithm. The deformed sinusoidal pattern encoding object shape is converted to a wrapped phase map without using phase-shifting or Fourier transform. Computer simulation and experimental performance are evaluated to demonstrate the validity of the proposed method. The experimental results compared with those of the four-step phase-shifting and fast Fourier transform methods are also presented.  相似文献   

17.
This article analyzes the measurement performance of a 3D full-field imaging system based on the projection of grating and active triangulation. We first explore the exact mathematical relationship that exists between the height of an object's surface, the phase and the parameters of the experimental setup, which relationship can be used to obtain the precise shape of an object. We then investigate in detail the influence on the measurement results of the introduction of an inaccuracy into the determination of the system's parameters. Finally, using simulated data, we conduct experiments to evaluate the measurement performance.  相似文献   

18.
The spatial resolution of the phase map in the Fourier transform fringe analysis method is determined by the size of the filter’s window in frequency domain. This article reports a straightforward technique to improve the method’s resolution by a factor of nearly two. The technique requires capturing a second image with a fringe pattern orthogonal to the first one, therefore using the information from both patterns to eliminate the central component in frequency space. The resulting spectrum supports double sized filter windows for removal of the carrier frequency without leaking into adjacent orders. The overall spatial resolution of the method is thus increased. In the following, the Fourier fringe analysis method is briefly reviewed, the new technique is described and analyzed and the experimental results are shown and discussed.  相似文献   

19.
20.
In this work we present a phase to (x,y,z)-coordinates transformation method for the calibration of a fringe projection profilometer. Our technique is divided in two parts: (1) phase to z transformation (for axial calibration) based on the typical polynomial fitting which uses a flat plane placed at several z positions to measure the phase of the projected fringes. (2) Phase to x and y transformation (for transverse calibration) based on the use of a crossed gratings pattern and a Fourier phase measurement method to determine x and y coordinates at several z positions. As will be shown the use of the crossed gratings pattern and the Fourier phase measurement method for transverse calibration is advantageous in several aspects: an unique image can give us x and y information at once. It provides x and y coordinates at each pixel in the image avoiding the use of interpolation methods. We present some experimental results and explain the viability of the proposed technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号