首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let D be a digraph of order n and λ1,λ2,…,λn denote all the eigenvalues of the skew-adjacency matrix of D. The skew energy ES(D) of D is defined as . In this paper, it is proved that for any positive integer k3, there exists a k-regular graph of order n having an orientation D with . This work positively answers a problem proposed by Adiga et al. [C. Adiga, R. Balakrishnan, Wasin So, The skew energy of a digraph, Linear Algebra Appl. 432 (2010) 1825-1835]. In addition, a digraph is also constructed such that its skew energy is the same as the energy of its underlying graph.  相似文献   

2.
Let λ1,λ2,…,λn be the eigenvalues of a graph G of order n. The energy of G is defined as E(G)=|λ1|+|λ2|+?+|λn|. Let be the graph obtained from two copies of C6 joined by a path Pn-10, Bn be the class of all bipartite bicyclic graphs that are not the graph obtained from two cycles Ca and Cb (a,b?10 and ab2 (mod 4)) joined by an edge. In this paper, we show that is the graph with maximal energy in Bn, which gives a partial solution to Gutman’s conjecture in Gutman and Vidovi? (2001) [I. Gutman, D. Vidovi?, Quest for molecular graphs with maximal energy: a computer experiment, J. Chem. Inf. Sci. 41 (2001) 1002-1005].  相似文献   

3.
The minimum skew rank of a simple graph G   is the smallest possible rank among all real skew-symmetric matrices whose (i,j)(i,j)-entry is nonzero if and only if the edge joining i and j is in G. It is known that a graph has minimum skew rank 2 if and only if it consists of a complete multipartite graph and some isolated vertices. Some necessary conditions for a graph to have minimum skew rank 4 are established, and several families of graphs with minimum skew rank 4 are given. Linear algebraic techniques are developed to show that complements of trees and certain outerplanar graphs have minimum skew rank 4.  相似文献   

4.
Let S(Gσ)S(Gσ) be the skew adjacency matrix of the oriented graph GσGσ of order n   and λ1,λ2,…,λnλ1,λ2,,λn be all eigenvalues of S(Gσ)S(Gσ). The skew spectral radius ρs(Gσ)ρs(Gσ) of GσGσ is defined as max{|λ1|,|λ2|,…,|λn|}max{|λ1|,|λ2|,,|λn|}. In this paper, we investigate oriented graphs whose skew spectral radii do not exceed 2.  相似文献   

5.
The skew energy of a digraph D is defined as the sum of the singular values of its skew adjacency matrix S(D). In this paper, we first interpret the entries of the power of the skew adjacency matrix of a digraph in terms of the number of its walks and then focus on the question posed by Adiga et al. [C. Adiga, R. Balakrishnan, Wasin So, The skew energy of a graph, Linear Algebra Appl. 432 (2010) 1825–1835] of determining all 3-regular connected digraphs with optimum skew energy.  相似文献   

6.
The skew energy of a digraph   总被引:1,自引:0,他引:1  
We are interested in the energy of the skew-adjacency matrix of a directed graph D, which is simply called the skew energy of D in this paper. Properties of the skew energy of D are studied. In particular, a sharp upper bound for the skew energy of D is derived in terms of the order of D and the maximum degree of its underlying undirected graph. An infinite family of digraphs attaining the maximum skew energy is constructed. Moreover, the skew energy of a directed tree is independent of its orientation, and interestingly it is equal to the energy of the underlying undirected tree. Skew energies of directed cycles under different orientations are also computed. Some open problems are presented.  相似文献   

7.
For a simple graph G, the energy E(G) is defined as the sum of the absolute values of all the eigenvalues of its adjacency matrix A(G). Let n,m, respectively, be the number of vertices and edges of G. One well-known inequality is that , where λ1 is the spectral radius. If G is k-regular, we have . Denote . Balakrishnan [R. Balakrishnan, The energy of a graph, Linear Algebra Appl. 387 (2004) 287-295] proved that for each ?>0, there exist infinitely many n for each of which there exists a k-regular graph G of order n with k<n-1 and , and proposed an open problem that, given a positive integer n?3, and ?>0, does there exist a k-regular graph G of order n such that . In this paper, we show that for each ?>0, there exist infinitely many such n that . Moreover, we construct another class of simpler graphs which also supports the first assertion that .  相似文献   

8.
We study the energy (i.e., the sum of the absolute values of all eigenvalues) of so-called tadpole graphs, which are obtained by joining a vertex of a cycle to one of the ends of a path. By means of the Coulson integral formula and careful estimation of the resulting integrals, we prove two conjectures on the largest and second-largest energy of a unicyclic graph due to Caporossi, Cvetkovi?, Gutman and Hansen and Gutman, Furtula and Hua, respectively. Moreover, we characterise the non-bipartite unicyclic graphs whose energy is largest.  相似文献   

9.
The least eigenvalue of graphs with given connectivity   总被引:2,自引:0,他引:2  
Let G be a simple graph and A(G) be the adjacency matrix of G. The eigenvalues of G are those of A(G). In this paper, we characterize the graphs with the minimal least eigenvalue among all graphs of fixed order with given vertex connectivity or edge connectivity.  相似文献   

10.
The energy of a graph is defined as the sum of the absolute values of all the eigenvalues of the graph. Let G(n,d) be the class of tricyclic graphs G on n vertices with diameter d and containing no vertex disjoint odd cycles Cp,Cq of lengths p and q with p+q2(mod4). In this paper, we characterize the graphs with minimal energy in G(n,d).  相似文献   

11.
The Laplacian-energy like invariant LEL(G) and the incidence energy IE(G) of a graph are recently proposed quantities, equal, respectively, to the sum of the square roots of the Laplacian eigenvalues, and the sum of the singular values of the incidence matrix of the graph G. However, IE(G) is closely related with the eigenvalues of the Laplacian and signless Laplacian matrices of G. For bipartite graphs, IE=LEL. We now point out some further relations for IE and LEL: IE can be expressed in terms of eigenvalues of the line graph, whereas LEL in terms of singular values of the incidence matrix of a directed graph. Several lower and upper bounds for IE are obtained, including those that pertain to the line graph of G. In addition, Nordhaus-Gaddum-type results for IE are established.  相似文献   

12.
Pavel Híc 《Discrete Mathematics》2008,308(16):3704-3705
A graph G is called integral if all the roots of the characteristic polynomial P(G;x) are integers. In the paper the first known integral complete 4-partite graph Kp1,p2,p3,p4, where p1<p2<p3<p4, is constructed.  相似文献   

13.
For k, d?2, a Bethe tree is a rooted tree with k levels which the root vertex has degree d, the vertices from level 2 to k-1 have degree d+1 and the vertices at the level k are pendent vertices. So et al, using a theorem by Ky Fan have obtained both upper and lower bounds for the Laplacian energy of bipartite graphs. We shall employ the above mentioned theorem to obtain new and improved bounds for the Laplacian energy in the case of Bethe trees.  相似文献   

14.
The energy of a simple graph G, denoted by E(G), is defined as the sum of the absolute values of all eigenvalues of its adjacency matrix. Denote by Cn the cycle, and the unicyclic graph obtained by connecting a vertex of C6 with a leaf of Pn-6. Caporossi et al. conjectured that the unicyclic graph with maximal energy is for n=8,12,14 and n16. In Hou et al. (2002) [Y. Hou, I. Gutman, C. Woo, Unicyclic graphs with maximal energy, Linear Algebra Appl. 356 (2002) 27-36], the authors proved that is maximal within the class of the unicyclic bipartite n-vertex graphs differing from Cn. And they also claimed that the energies of Cn and is quasi-order incomparable and left this as an open problem. In this paper, by utilizing the Coulson integral formula and some knowledge of real analysis, especially by employing certain combinatorial techniques, we show that the energy of is greater than that of Cn for n=8,12,14 and n16, which completely solves this open problem and partially solves the above conjecture.  相似文献   

15.
The distance energy of a graph G is a recently developed energy-type invariant, defined as the sum of absolute values of the eigenvalues of the distance matrix of G. There was a vast research for the pairs and families of non-cospectral graphs having equal distance energy, and most of these constructions were based on the join of graphs. A graph is called circulant if it is Cayley graph on the circulant group, i.e. its adjacency matrix is circulant. A graph is called integral if all eigenvalues of its adjacency matrix are integers. Integral circulant graphs play an important role in modeling quantum spin networks supporting the perfect state transfer. In this paper, we characterize the distance spectra of integral circulant graphs and prove that these graphs have integral eigenvalues of distance matrix D. Furthermore, we calculate the distance spectra and distance energy of unitary Cayley graphs. In conclusion, we present two families of pairs (G1,G2) of integral circulant graphs with equal distance energy - in the first family G1 is subgraph of G2, while in the second family the diameter of both graphs is three.  相似文献   

16.
Let G be a simple connected graph of order n   with degree sequence d1,d2,…,dnd1,d2,,dn in non-increasing order. The signless Laplacian spectral radius ρ(Q(G))ρ(Q(G)) of G   is the largest eigenvalue of its signless Laplacian matrix Q(G)Q(G). In this paper, we give a sharp upper bound on the signless Laplacian spectral radius ρ(Q(G))ρ(Q(G)) in terms of didi, which improves and generalizes some known results.  相似文献   

17.
The rank of a graph G is defined to be the rank of its adjacency matrix. In this paper, we consider the following problem: What is the structure of a connected graph with rank 4? This question has not yet been fully answered in the literature, and only some partial results are known. In this paper we resolve this question by completely characterizing graphs G whose adjacency matrix has rank 4.  相似文献   

18.
19.
LetRT(n), ED(n) andEOG(n) be the number of labelled regular tournaments, labelled loop-free simple Eulerian digraphs, and labelled Eulerian oriented simple graphs, respectively, onn vertices. Then, asn,, for any>0. The last two families of graphs are also enumerated by their numbers of edges. The proofs use the saddle point method applied to appropriaten-dimensional integrals.  相似文献   

20.
The energy of a graph G is equal to the sum of the absolute values of the eigenvalues of G, which in turn is equal to the sum of the singular values of the adjacency matrix of G. Let X, Y, and Z be matrices, such that X+Y=Z. The Ky Fan theorem establishes an inequality between the sum of the singular values of Z and the sum of the sum of the singular values of X and Y. This theorem is applied in the theory of graph energy, resulting in several new inequalities, as well as new proofs of some earlier known inequalities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号