首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sensitivity of photonic-delay homodyne phase noise measurement system is improved by using high-linear photodetector and low-phase noise amplifier in this paper. The phase noise model for microwave link is proposed and the sensitivity of photonic-delay based measurement system is analyzed with this theory model. Results show that phase noise sensitivity in this measurement system is −130 dBc/Hz at 1 kHz and −145 dBc/Hz at 10 kHz, and in my knowledge it is the highest sensitivity for photonic-delay homodyne technology without cross correlation.  相似文献   

2.
The aeroacoustic wind tunnel at Brandenburg University of Technology at Cottbus is a newly commissioned research facility for the experimental study of sound generation from bodies immersed in a fluid flow. The paper discusses the design criteria for the open jet wind tunnel that provides a maximum wind speed of 72 m/s at continuous operation and may be operated with nozzles of different dimension between 35 cm diameter (circular nozzle) and 12 cm by 14.7 cm (rectangular nozzle). Experiments may be performed either in a reverberant or in an anechoic environment. Both the aerodynamic and the acoustic design of the wind tunnel components are discussed in detail. Background noise measurements in the completed facility revealed very low levels comparable to other wind tunnels. The results of aerodynamic wind tunnel calibration confirmed a uniform flow quality in the jet and a very low axial turbulence intensity which is less than 0.2% for the 35 cm nozzle and less than 0.1% for the other nozzles. A final benchmark is provided by results of successful trailing edge noise measurements on an SD7003 airfoil that are presented and compared to results from the literature.  相似文献   

3.
Temperature effect on tyre-road noise   总被引:1,自引:0,他引:1  
Tyre-road noise emission decreases when the outdoor temperature increases, with a variation that can exceed −0.1 dB(A)/°C. This effect depends on tyre-road combination, but semi-generic corrections can improve the accuracy of tyre-road noise measurements. In this paper, the variation of pass-by noise level of a passenger car at 90 km/h with temperature is investigated, on seven types of road surfaces, under different temperature conditions. A good correlation between air, road surface and tyre temperature is outlined. A linear relationship between noise level and air temperature variations is observed for bituminous pavements, of about −0.1 dB(A)/°C, but reduced to −0.06 dB(A)/°C for pavements having porosity. No temperature effect is observed on cement concrete pavements. A spectral analysis shows that the temperature effect is highest in low and high frequency range, what can be explained by generating mechanisms rather than propagation.  相似文献   

4.
Design and performance of a small-scale aeroacoustic wind tunnel   总被引:3,自引:0,他引:3  
The D5 aeroacoustic wind tunnel at Beihang University is a newly commissioned small-scale closed-circuit wind tunnel with low turbulence intensity and low background noise. The wind tunnel is built to study both aerodynamic and aeroacoustic performance of aircraft components or scaled models. The wind tunnel has two types of test sections, the closed type test section is used for aerodynamic tests while the open type test section is mainly used for aeroacoustic experiments. Both types of test section are 1 m in height and 1 m in width, and the maximum wind velocity in the test section can be up to 80 m/s. An anechoic chamber is built surrounding the test section to provide the non-reflecting condition. This paper provides an overview of design criteria and performance of the small-scale wind tunnel. The layout of the wind tunnel and some critical design treatments to improve aerodynamic and acoustic performance are discussed in detail. Some experiments are conducted to verify the performance of D5 wind tunnel, results confirm that the turbulence intensity is less than 0.08% in the core of test section and the background noise is comparable with other aeroacoustic wind tunnels. A scaled simplified nose landing gear model is also measured as a benchmark test, results reveal that noise radiated from the model is adequately higher than the background noise for a wide frequency range and remarkably consistent with other results from literatures.  相似文献   

5.
The purpose of this study is, via employing SoundPLAN 7.3 software, to model the noise pollution that Tarsus-Adana-Gaziantep (TAG) Highway passing through Adana city induces in Adana city center and to designate the ratio of population exposed to the noise. The study was executed in an area extending from a 17 km-route of TAG Highway passing through Adana city center and 1900.62 ha area that surrounding 500 m north and 500 m south directions of this particular route.  相似文献   

6.
Two-level injection-locked opto-electronic oscillator is proposed for low phase noise. Dielectric resonator oscillator (DRO) is used as the first injection source, injection locking a long-fiber loop based opto-electronic oscillator, then its output is injection locking another long-fiber opto-electronic oscillator for getting a lower-phase noise output carrier. After the first injection, the single side band (SSB) phase noise at 10 kHz offset frequency decreases from −123 dBc/Hz to −135 dBc/Hz, then through the second injection the SSB phase noise drops down to −146 dBc/Hz.  相似文献   

7.
Y. Simard  R. Lepage 《Applied Acoustics》2010,71(11):1093-1098
The impact of shipping noise on marine life and quality of marine mammal habitats in oceans and coastal environments has become a major concern worldwide. Background noise can also limits detection of marine mammal sounds in passive acoustic monitoring (PAM) systems. Characterisation of this noise over long time periods and estimates of the exposure of the different marine mammal groups are still very fragmentary and limited to only a few locations. This paper presents such observations for a part of a busy seaway of North America, the St. Lawrence Seaway, which cuts through the Gulf of St. Lawrence and crosses several cetaceans and pinnipeds feeding areas. Noise was continuously recorded for a 5-month period in summer 2005 by an AURAL autonomous hydrophone deployed close to the bottom in the 300-m deep seaway. The maximum received noise level in the 20 Hz-0.9 kHz band reached 136 dB re 1 μParms. The median level of 112 dB re 1 μParms was exceeded 50% of the time due to transiting merchant ships. Median spectral level tracks the reference curve for heavy traffic in oceans and 50% of the noise is within a ±6 dB envelope around it. Strong spectral lines were common at low frequencies and in the 400-800 Hz band. M-weighting functions applied for the three groups of cetaceans and pinnipeds indicate wideband median levels varying from 106 to 112 dB-M re 1 μParms surrounded by a ±5 dB two-quartile interval. Higher values are expected for animals frequenting the sound channel at intermediate depths. As expected, the highest M-weighting levels correspond to low-frequency specialists and pinnipeds. Criteria for assessing the behavioural and physiological impacts of long term exposure of marine mammals to such shipping noise levels need to be worked out.  相似文献   

8.
The characteristics of various types of refrigerator noise were investigated in an anechoic chamber and in a real living environment - a 100 m2 apartment which is a common size in Korea. It was found that the sound pressure level of the refrigerator noise in the real living room was about 10 dB higher than the level in the anechoic chamber at the same position (1 m in front of refrigerator). In addition, a tolerance level for refrigerator noise was determined by subjective evaluation experiments. Refrigerator noise was presented by a loudspeaker placed in the kitchen where the refrigerator is normally located. Level 2 responses to the subjective evaluation (“hardly perceivable”) corresponded to a sound pressure level of about 26 dB(A), for which 90% of participants were satisfied with the level of refrigerator noise. A semantic differential test using various adjectives was also conducted to evaluate the sound quality of refrigerator noise. With the semantic differential and the factor analysis, adjectives used in this experiment were grouped into three factors. From the results of correlation and multiple regression analyses on the psychoacoustical parameters and subjective evaluations of 30 kinds of refrigerators, sound quality index which predict the subjective rating score were proposed.  相似文献   

9.
This paper presents the design and performance of an open jet, blow down wind tunnel that was newly commissioned in the anechoic chamber at the ISVR, University of Southampton, UK. This wind tunnel is intended for the measurement of airfoil trailing edge self-noise but can be extended to other aeroacoustic applications. With the primary objectives of achieving acoustically quiet and low turbulence air jet up to 120 m/s through a 0.15 m × 0.45 m nozzle, several novel noise and flow control techniques were implemented in the design. Both the acoustical and aerodynamic performances of the open jet wind tunnel were examined in detail after its fabrication. It is found that the background noise of the facility is adequately low for a wide range of exit jet velocity. The potential core of the free jet is characterized by a low turbulence level of about 0.1%. Benchmark tests by submerging a NACA0012 airfoil with tripped and untripped boundary layers at 0° and 10° angles of attack respectively into the potential core of the free jet were carried out. It was confirmed that the radiating airfoil trailing edge self-noise has levels significantly above the rig noise over a wide range of frequencies. The low noise and low turbulence characteristics of this open jet wind tunnel are comparable to the best facilities in the world, and for its size it is believed to be the first of its kind in the UK.  相似文献   

10.
In order to control low frequency noise in exhaust pipe, this paper puts forward a new concept of H-Q tube based semi-active muffler device. The semi-active muffler device and bench testing system have been designed and operated. Finite element simulation study on semi-active muffler and experimental study on semi-active muffler and passive muffler have been carried on. The effect of simulation and experiment are consistent. The semi-active muffler device acts well in low frequency band, especially between 50 Hz and 150 Hz. The average level of noise reduction is around 35 dB, which is much better than passive muffler. Between 150 Hz and 350 Hz, semi-active muffler has a better performance than passive muffler; above 350 Hz, it has worse performance compared with the passive muffler.  相似文献   

11.
Bridge noise and rail noise are two major sources of an elevated rail transit bridge in the low and medium frequency range (20–1000 Hz). However, in most of the existing literature, the noise radiated from the bridge and rail was investigated separately or using a simplified source model. In this study, an accurate method is proposed to simulate both the rail noise and bridge noise simultaneously. First, the dynamic responses of the rail and multi-span bridge are obtained using a three-dimensional (3D) vehicle-track-bridge interaction analysis model. Then, the two-dimensional (2D) infinite element model is used to calculate 3D modal acoustic transfer vectors of the rail and bridge based on the wavenumber transformation, in order to overcome the singularity and non-uniqueness of the conventional boundary element method and reduce the computation cost. Third, a field test is conducted, and the accuracy of the proposed simulation procedure is verified. Finally, the contribution of the rail and bridge noise to the total noise level is investigated in the whole space near the bridge. Generally the bridge noise occupies a higher contribution in the space beneath the girder due to the shielding effect of the bridge shape on the rail noise, while the rail noise is dominant in the upper space above the bridge. It is found the presence of the vehicle bodies has considerable effect on the rail noise but little influence on the bridge noise. The slope of the roughness level spectrum has significant influence on the dominant field of bridge noise and rail noise. For the excitation of the assumed ISO roughness level used in this study, the difference between the rail noise and bridge noise is only about 3 dB at field points 15–30 m away from the track center, which indicates both the bridge and rail noise should be included in the noise prediction for an elevated rail transit bridge.  相似文献   

12.
In this paper we propose a simple divided spectrum balanced detection (DSBD) for spectral amplitude coding (SAC) optical code division multiple access (OCDMA) systems. SAC OCDMA systems are limited by phase induced intensity noise (PIIN), which is a signal dependent source of noise. Our proposed technique reduces the PIIN by dividing the spectrum of the signal into two or more, and detecting each spectrum by a different photodiode. The DSBD scheme reduces the detected optical power at photodetection, thus resulting in a higher mitigation of the PIIN. Theoretical results show that DSBD demonstrate noticeable improvement over traditional balanced detection technique, for example an up to 33% increase in the number of active users can be achieved, and at least 1 × 10−3 b/s Hz increase in the spectral efficiency is obtained. However, the SDBD is more complex and append more constrains on system components.  相似文献   

13.
Active noise control (ANC) techniques are based on the emission of an antiphase signal in order to cancel the noise produced by a primary source. ANC has been successfully applied especially for reducing noise in confined environments, such as headphones and ducts. In this study, we present an application of ANC concepts to the design of an anti-noise barrier for an outdoor environment and its experimental testing. Even though passive techniques are effective in noise reduction at middle-high frequencies, they become less efficient at low frequencies (below 300 Hz) due to the limited dimensions of commonly deployable barriers. In this paper, we analyze the properties of a low-cost active noise system able to efficiently operate on stationary, almost pure-tone, low-frequency noise, such as that produced by electrical transformers and reactors in power and transformation plants. A prototype has been implemented and on-the-field experimental tests have been carried out. The results (confirmed also by numerical simulations) demonstrate a remarkable efficiency in the far field, with a reduction up to 15 dB with respect to the absence of the ANC system.  相似文献   

14.
The purpose of this study is to present a statistical model which can predict the noise level of road-traffic in urban area. A spatial statistical model which can take into account spatial dependency on geographically neighboring areas is constructed from a noise map of a city in South Korea. A system of 250 m × 250 m grid cells is placed on the city of Cheongju, South Korea, and the noise level and urban form indicators are averaged over each cell. The population-weighted mean of the noise level is subsequently regressed on the average urban form by adopting the spatial autoregressive model (SAR) and the spatial error model (SEM), as well as an ordinary least squares (OLS) model. Direct and indirect impacts are analyzed for a valid interpretation of the spatial statistical models. Factors such as GSI, FSI, traffic volume, traffic speed, road area density, and the fraction of industrial area turn out to have significant impacts on the noise level.  相似文献   

15.
To thoroughly explore the aerodynamic noise in order to achieve a more efficient engineering application for a vehicle intake system, the large eddy simulation and the finite element method were employed in numerical simulations, and the aeroacoustic characteristics were validated through the experimental data. In this research, the k-ε model was adopted to simulate the steady state fluid dynamic, and the static pressure loss was consistent with the bench test data, indicating the computational fluid dynamics model was valid. After acquiring the data from the steady state simulation, the fluctuating pressure of the inner wall was calculated based on the transient state calculation results from the large eddy simulation. Thereafter, the finite element method was used to determine the acoustic performance of the intake system. By comparing the experiment data, the noise reduction indicated that the intake system performed well at various frequencies, e.g. 320 Hz, 520 Hz and 770 Hz, but poorly at 140 Hz, 210 Hz, 420 Hz and 600 Hz. Finally, the far-field aerodynamic noise was calculated based on FW-H equation, and the output showed that the noise of each measuring point agreed well with the test results in trend. In particular, the inlet sound pressure spectrum almost fit the test data with the airflow of 300 m3/h, and several amplitude peaks appeared at 210 Hz, 420 Hz and 600 Hz, corresponding to the low-attenuation region of the noise reduction curve. Moreover, the specific frequencies were not shifted with the airflow changing. In conclusion, the numerical simulation method proves to be effective in calculating the aerodynamic noise accurately.  相似文献   

16.
According to 4 acoustical parameters of noise samples (i.e., loudness, sharpness, fluctuation strength and roughness), Zwicker’s psychoacoustic annoyance model can be used to estimate the relative degree of noise annoyance. However, this model cannot be well applied to compare the annoyance degrees of tonal noises and atonal noises. In order to improve its estimation effect on tonal noises, 3 groups of noise samples were selected randomly, i.e., 27 low-frequency tonal noise samples induced by a 1000 kV transformer with A-weighted equivalent sound pressure levels ranging from 41.2 dBA to 73.0 dBA; 30 low-, mid- or high-frequency tonal/atonal noise samples with loudness levels ranging from 60 phon to 80 phon; and 60 other noise samples with A-weighted equivalent sound pressure levels ranging from 40.7 dBA to 75.0 dBA. Laboratory listening tests were conducted on the above 3 sample groups respectively via an 11-point numerical scale. The Zwicker’s psychoacoustic annoyance model was improved by taking tonality into account, and introducing the evaluation result of the first noise sample group (1000 kV transformer noise samples) to determine the coefficients in the model. The applicability of the improved model was examined by the evaluation results of the other two groups as well as the data in a previous research on annoyance of 220 kV/500 kV transformer noises. Results show that the improved model can estimate the relative annoyance degrees caused by various types of tonal/atonal noises much more accurately.  相似文献   

17.
A field study has been carried out in urban Assiut city, Egypt. The goals of this study are: (1) to carry out measurements to evaluate road traffic noise levels, (2) to determine if these levels exceeds permissible levels, (3) to examine people’s attitudes towards road traffic noise, (4) to ascertain the relationship between road traffic noise levels and degree of annoyance. The measurements indicate that traffic noise noise levels are higher than those set by Egyptian noise standards and policy to protect public health and welfare in residential areas: equivalent continuous A - weighted sound pressure levels (LA eq) = 80 dB and higher were recorded, while maximum permissible level is 65 dB. There is a strong relationship between road traffic noise levels and percentage of highly annoyed respondents. Higher road traffic noise levels mean that the percentage of respondents who feel highly annoyed is also increased.  相似文献   

18.
This paper reports on experimental tests undertaken to assess the capability of noise monitoring applications to be utilized as an alternative low cost solution to traditional noise monitoring using a sound level meter. The methodology consisted of testing 100 smartphones in a reverberation room. Broadband white noise was utilized to test the ability of smartphones to measure noise at background, 50, 70 and 90 dB(A) and these measurements were compared with true noise levels acquired via a calibrated sound level meter. Tests were conducted on phones using the Android and iOS platforms. For each smartphone, tests were completed separately for leading noise monitoring apps culminating in 1472 tests. The results suggest that apps written for the iOS platform are superior to those running on the Android platform. They show that one of the apps tested – SLA Lite – is within ±1 dB of true noise levels across four different reference conditions. The results also show that there is a significant relationship between phone age and its ability to measure noise accurately. The research has implications for the future use of smartphones as low cost monitoring and assessment devices for environmental noise.  相似文献   

19.
This work reports on investigations into the wind dependence of ambient noise in the Bay of Bengal. Ambient noise measurements were made in the shallow water of Bay of Bengal using a portable broadband, high frequency data acquisition system together with a sensitive hydrophone suspended from the measuring platform at a depth of 5 m from the surface where the ocean depth was 25 m. Periodic measurements were carried out for one year corresponding to a wind speed range between 2 m/s and 9 m/s during summer, monsoon and winter seasons. The proportionality of the noise level with wind speed for frequencies ranging from 500 Hz to 6 kHz for each season was studied. The analysis reveals that the correlation between the wind speed and the ambient noise spectrum level was higher at lower frequencies. The results of empirical fitting based on analysis were used for noise level prediction and the model predictions compare well with the measured noise level. Further it was observed that the wind generated noise level measured during summer was approximately 8 dB less than that in other seasons. On the other hand the proportionality between the noise level and the wind speed was less during winter.  相似文献   

20.
The subject of this paper is the long distance propagation of train noise. The sound exposure level of train noise LAE was measured. To describe the results of measurements, a semi-analytical model was used. It takes into account the wave-front divergence, air absorption, ground effect, and the turbulence destroying the coherent nature of the ground effect. The model contains three adjustable parameters that must be estimated at the site. To verify the model, we performed measurements of LAE at the distance D = 450 m from the train track center. The difference between the calculated and measured mean values of LAE equals 1.3 dB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号