首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present results from molecular dynamics simulation of aqueous solutions of alkali halide salts (NaI and NaF) at the interface with hydrophobic objects. The primary objective of this study is to investigate the structural properties of the salt solutions at the hydrophobic surface. An alkane crystal has been taken as the parent model for a hydrophobic surface. A hexagonal hole was created on it, which was half a nm deep and 2.5 nm wide. The density distributions of different species (water, anions, and cations) are studied as a function of distance from the surface. While iodide prefers the interface, the fluoride ions stay inside the bulk water region. The higher concentration of iodide ions at the interface drags sodium counterions to the interface. It also decreases the water density at the interface because of steric effects of the iodide ions. The number of contacts between the surface carbons and water decreases in the case of NaI solutions but is unchanged for NaF solutions. The orientation of the water-ion and the water-water hydrogen bond vector orientations near the interface is discussed in detail.  相似文献   

2.
Photoelectron spectroscopy combined with the liquid microjet technique enables the direct probing of the electronic structure of aqueous solutions. We report measured and calculated lowest vertical electron binding energies of aqueous alkali cations and halide anions. In some cases, ejection from deeper electronic levels of the solute could be observed. Electron binding energies of a given aqueous ion are found to be independent of the counterion and the salt concentration. The experimental results are complemented by ab initio calculations, at the MP2 and CCSD(T) level, of the ionization energies of these prototype ions in the aqueous phase. The solvent effect was accounted for in the electronic structure calculations in two ways. An explicit inclusion of discrete water molecules using a set of snapshots from an equilibrium classical molecular dynamics simulations and a fractional charge representation of solvent molecules give good results for halide ions. The electron binding energies of alkali cations computed with this approach tend to be overestimated. On the other hand, the polarizable continuum model, which strictly provides adiabatic binding energies, performs well for the alkali cations but fails for the halides. Photon energies in the experiment were in the EUV region (typically 100 eV) for which the technique is probing the top layers of the liquid sample. Hence, the reported energies of aqueous ions are closely connected with both structures and chemical reactivity at the liquid interface, for example, in atmospheric aerosol particles, as well as fundamental bulk solvation properties.  相似文献   

3.
The aim of this study is to analyze the use of Ag-doped activated carbon aerogels for bromide and iodide removal from drinking water and to study how the activation of Ag-doped aerogels affects their behavior. It has been observed that the carbonization treatment and activation process of Ag-doped aerogels increased the surface area value ( [Formula: see text] ), whereas the volume of meso-(V(2)) and macropores (V(3)) decreased slightly. Chemical characterization of the materials revealed that carbonization and especially activation process considerably increased the surface basicity of the sample. Original sample (A) presented acidic surface properties (pH(PZC)=4.5) with 21% surface oxygen, whereas the sample that underwent activation showed mainly basic surface chemical properties (pH(PZC)=9.5) with only 6% of surface oxygen. Carbonization and especially, activation process considerable increased the adsorption capacity of bromide and iodide ions. This would mainly be produced by (i) an increase in the microporosity of the sample, which increases Ag-adsorption sites available to halide anions, and (ii) a rise of the basicity of the sample, which produces an increase in attractive electrostatic interactions between the aerogel surface, positively charged at the working pH (pH(solution)相似文献   

4.
To compare the effect of nitrate anions on the surface tension increments of aqueous solutions with that of halide anions, the surface tension of aqueous solutions of lithium nitrate, sodium nitrate, and potassium nitrate was measured as a function of temperature and concentration. It is shown that the surface tension of aqueous alkali metal nitrate solutions is determined primarily by the kinds of anions, since the surface tension increments of these nitrates were of the same magnitude. The importance of the electrical double layer at the surface is discussed in relation to these surface tension increments.  相似文献   

5.
The behaviors of a series of calcium halides and of alkali earth metal chlorides in the air/water surface region were studied in comparison with those of alkali metal halides by measuring the surface tension increments of solutions. The effect of salts with divalent cations on the surface tension increments is more pronounced than that of uni-univalent salts, but there are some similarities between these two types. It seems that the anions cause a marked effect on surface tension which is proportional to the magnitude of hydration in the bulk water. We also observed a decrease in the entropy change of surface formation with increasing concentration. The importance of an electrical double layer at the surface is discussed in relation to these surface tension increments.  相似文献   

6.
To demonstrate an important distinction between the electrolytes and nonelectrolytes, surface tension of aqueous solutions of typical nonelectrolytes, sucrose and glucose, was measured as a function of temperature and concentration. The presence of sucrose or glucose molecules in the surface region affects the surface tension in the same way as the presence of an ion does. There is, however, a difference in the temperature coefficient of the surface tension between typical nonelectrolyte solutions, sucrose and glucose, and alkali halide solutions. The entropy of surface formation of sucrose and glucose solutions is the same as that of pure water, while that of alkali halide solutions decreases with concentration. The relation between this entropy change and the formation of electric double layers was discussed.  相似文献   

7.
The solubility of glucose was measured in aqueous saturated alkali metal halide (NaF, NaCl, NaBr, NaI, KCl, KBr, and KI) solutions at 30°C. The solubility of glucose in saturated sodium halide solutions is lower than that in water. On the contrary, the solubility of glucose in saturated potassium halide solutions is higher than that in water. The determinations of glucose solubility were also carried out in some unsaturated NaCl or KCl solutions at 30°C. In the case of NaCl, the glucose solubility curve is not simple. It increases slightly at lower NaCl concentrations then decreases gradually with increases NaCl concentration. In the case of KCl, the curve is simple, the solubility of glucose increasing with increases KCl concentration. The determinations of alkali metal chloride solubilities were also carried out in the presence of glucose at 30°C.  相似文献   

8.
There is a considerable disagreement about the extent to which solutes perturb water structure. On the one hand, studies that analyse structure directly only show local structuring in a solute's first and possibly second hydration shells. On the other hand, thermodynamic and kinetic data imply indirectly that structuring occurs much further away. Here, the hydrogen-bond structure of water around halide anions, alkali cations, noble-gas solutes, and at the vapor-water interface is examined using molecular dynamics simulations. In addition to the expected perturbation in the first hydration shell, deviations from bulk behavior are observed at longer range in the rest of the simulation box. In particular, at the longer range, there is an excess of acceptors around halide anions, an excess of donors around alkali cations, weakly enhanced tetrahedrality and an oscillating excess and deficiency of donors and acceptors around noble-gas solutes, and enhanced tetrahedrality at the vapor-water interface. The structuring compensates for the short-range perturbation in water-water hydrogen bonds induced by the solute. Rather than being confined close to the solute, it is spread over as many water molecules as possible, presumably to minimize the perturbation to each water molecule.  相似文献   

9.
Shen Z  Li H  Feng L 《The Analyst》2011,136(23):5025-5029
A ratiometric indicator-displacement assay (RIDA) array has been developed for the semi-quantitative colorimetric determination of chloride, bromide, and iodide anions. Determinations of these halide anions follow the displacement reaction using the chelate compound of (2-(3,5-dibromo-2-pyridylazo)-5-(diethylamino)phenol) (3,5-Br2-PADAP) and heavy metal salts as colorimetric reagent. Different from regular silver nitrate titrations, the chloride, bromide, and iodide anions compete with the 3,5-Br2-PADAP ligand and change the colour of the 3,5-Br2-PADAP-metal chelate compound dramatically. These clearer colour changes make the semi-quantitative colorimetric determination of chloride, bromide, and iodide anions possible. The colour changes are imaged using a conventional flatbed scanner, and digitized. After statistical analysis, these colour changes in the RIDA array provide facile identification of chloride, bromide, and iodide anions at a wide concentration range (10 μM to 10 mM) without any misclassification. The RIDA array is able to discriminate without misclassifications among seven concentrations of chloride, bromide, and iodide anions. No shelf life issue exists because the chelating compounds react with halide anions directly without any pre-immobilizations.  相似文献   

10.
Second harmonic generation (SHG), a surface specific, nonlinear optical spectroscopy, was used to study the interfacial solvation of a neutral surfactant, p-nitrophenol (PNP), adsorbed to the water/cyclohexane interface in the presence of simple salts at varying salt concentrations. The purpose of this work was to determine what relationship (if any) exists between interfacial polarity and bulk solution ionic strength. Data show an apparent red shift in SHG spectra with an increase in salt anion size from fluoride to chloride to bromide at 1 M salt concentrations. A spectral red shift of the PNP electronic excitation implies an increase in local polarity. Within experimental limits, however, these observed interfacial spectral shifts mimic shifts in absorbance spectra observed for PNP in bulk electrolyte solutions. Given the similarities between bulk and surface behavior, we conclude that observed shifts in SHG spectra may be attributed to effects similar to those found in bulk solution. Additionally, the surface adsorption of PNP to the water/cyclohexane interface was studied to determine the surface distribution of PNP and the conjugate base, p-nitrophenoxide (PNP(-)), for a 10 mM PNP solution. PNP adsorption is favored over PNP(-) adsorption by a factor of 10, giving rise to an equilibrium surface distribution that is an order of magnitude greater than that found in bulk solution. These findings indicate that the amount of PNP(-) at the surface in an aqueous solution of 10 mM PNP is negligible.  相似文献   

11.
Surface segregation of iodide, but not of fluoride or cesium ions, is observed by a combination of metastable impact electron spectroscopy (MIES) and ultraviolet photoelectron spectroscopy (UPS(HeI)) of amorphous solid water exposed to CsI or CsF vapor. The same surface ionic behavior is also derived from molecular dynamics (MD) simulations of the corresponding aqueous salt solutions. The MIES results show the propensity of iodide, but not fluoride, for the surface of the amorphous solid water film, providing thus strong evidence for the suggested presence of heavier halides (iodide, bromide, and to a lesser extent chloride) at the topmost layer of aqueous surfaces. In contrast, no appreciable surface segregation of ions is observed in methanol, neither in the experiment nor in the simulation. Furthermore, the present results indicate that, as far as the thermodynamic aspects of solvation of alkali halides are concerned, amorphous solid water and methanol surfaces behave similarly as surfaces of the corresponding liquids.  相似文献   

12.
13.
We have determined the concentration–depth profiles of sodium dodecyl sulfate (SDS) and cesium dodecyl sulfate (CDS) in their pure solutions, by which the surface structure of those solutions are characterized. With the identical bulk concentration, more Cs ions than sodium ions are present at the topmost layer and they penetrate deeper than sodium ions into the layer formed by the heads of the anions, shielding the electrostatic repulsion among those negatively charged anions more efficiently. The distributions of the charge at the surface of each studied solution were determined from those concentration–depth profiles of surfactant ions. The charge density varies more drastically in SDS solutions than in CDS solutions when their bulk concentrations are identical. These charge density profiles exhibit a visible and direct insight into the electric charge structure of the surface of ionic surfactant solutions. The experimental findings might be helpful to the investigations on the surface structures of aqueous solutions of ionic surfactants.  相似文献   

14.
Strongly ionized amphiphilic diblock copolymers of poly(styrene)-b-poly(styrenesulfonate) with various hydrophilic and hydrophobic chain lengths were synthesized by living radical polymerization, and their properties and self-assembling behavior were systematically investigated by surface tension measurement, foam formation, hydrophobic dye solubilization, X-ray reflectivity, dynamic light scattering, small-angle neutron scattering, small-angle X-ray scattering, and atomic force microscope techniques. These copolymer solutions in pure water did not show a decrease of surface tension with increasing polymer concentration. The solutions also did not show foam formation, and no adsorption at the air/water interface was confirmed by reflectivity experiments. However, in 0.5 M NaCl aq solutions polymer adsorption and foam formation were observed. The critical micelle concentration (cmc) was observed by the dye solubilization experiment in both the solutions with and without added salt, and by dynamic light scattering we confirmed the existence of polymer micelles in solution, even though there was no adsorption of polymer molecules at the water surface in the solution without salt. By the small-angle scattering technique, we confirmed that the micelles have a well-defined core-shell structure and their sizes were 100-150 A depending on the hydrophobic and hydrophilic chain length ratio. The micelle size and shape were unaffected by addition of up to 0.5 M salt. The absence of polymer adsorption at the water surface with micelle formation in a bulk solution, which is now known as a universal characteristic for strongly ionized amphiphilic block copolymers, was attributed to the image charge effect at the air/water interface due to the many charges on the hydrophilic segment.  相似文献   

15.
The hypothesis that pH dependent charge of interfacial water affects electrokinetic charge and electrokinetic potential of hydrophobic colloids, but not the (inner) surface potential was tested. It was found that isoelectric points of silver chloride, bromide and iodide shift to the higher pAg values in the acidic solutions, but that surface potential did not depend on pH. Isoelectric points of water at inert surfaces lie in the range 2相似文献   

16.
We study the molecular mechanisms of alkali halide ion interactions with the single‐wall carbon nanotube surface in water by means of fully atomistic molecular dynamics simulations. We focus on the basic physical‐chemical principles of ion–nanotube interactions in aqueous solutions and discuss them in light of recent experimental findings on selective ion effects on carbon nanotubes.  相似文献   

17.
The equilibrium adsorption layers of symmetric chain alkyltrimethylammonium alkyl sulfates (Cn+.Cn- for n = 8, 12) were investigated at the air/water interface by sum-frequency vibrational spectroscopy in the function of the bulk surfactant concentration. To ensure the surface purity of the solutions investigated, an improved version of the foam fractionation method was used for the purification of the constituent ionic surfactants and the surface purity of the solutions was also checked. In the monolayer of the C12+.C12- surfactant, a two-dimensional first-order gas/liquid phase transition was observed. At surfactant bulk concentrations just exceeding the concentration corresponding to the phase transition, the monolayer is conformationally disordered, liquidlike, but with increasing bulk surfactant concentration the conformational order of the monolayer increases. The SFG spectra of the C8+.C8- monolayer did not indicate the occurrence of phase transition at room temperature.  相似文献   

18.
The adsorption kinetics of some local anesthetics, like dibucaine and tetracaine, and of stearic acid from bulk solutions at the oil/water interface was studied by using the pendent drop and ring methods. The anesthetics were dissolved in aqueous solutions (pH 2), and the fatty acid was dissolved in benzene, each biocompound at several different concentrations in bulk solutions. Kinetic equations for Langmuir mechanism of adsorption at oil/water interface were tested. The kinetic analysis shows that Langmuir kinetic approach describes the dynamic interfacial pressures within the limits of the experimental errors over a wide range of time and for different surfactant concentrations in bulk solutions. It is also concluded that this approach allows the calculation of the ratio of the adsorption and desorption rate constants of these biocompounds at the oil/water interface. Obtained results are in substantial agreement with earlier reported data for the surfactant adsorption as, well as with their molecular structure.  相似文献   

19.
Molecular dynamics simulations have been used to investigate the behavior of aqueous sodium nitrate in interfacial environments. Polarizable potentials for the water molecules and the nitrate ion in solution were employed. Calculated surface tension data at several concentrations are in good agreement with measured surface tension data. The surface potential of NaNO3 solutions at two concentrations also compare favorably with experimental measurements. Density profiles suggest that NO3- resides primarily below the surface of the solutions over a wide range of concentrations. When the nitrate anions approach the surface of the solution, they are significantly undercoordinated compared to in the bulk, and this may be important for reactions where solvent cage effects play a role such as photochemical processes. Surface water orientation is perturbed by the presence of nitrate ions, and this has implications for experimental studies that probe interfacial water orientation. Nitrate ions near the surface also have a preferred orientation that places the oxygen atoms in the plane of the interface.  相似文献   

20.
Molecular geometries and properties of the possible reaction products between the hydroxyl radical and the halide anions in aqueous solution were investigated. The formation of two-center three-electron bonding (hemibonding) between the hydroxyl radical and halide anions (Cl, Br, I) was examined by density functional theory (DFT) calculation with a range-separated hybrid (RSH) exchange-correlation functional. The long-range corrected hybrid functional (LC-ωPBE), which have given quantitatively satisfactory results for odd electron systems and excited states, was examined by test calculations for dihalogen radical anions (X(2)(-); X = Cl, Br, I) and hydroxyl radical-water clusters. Equilibrium geometries with hemibonding between the hydroxyl radical and halide anions were located by including four hydrogen-bonded water molecules. Excitation energies and oscillator strengths of σ-σ* transitions calculated by the time-dependent DFT method showed good agreement with observed values. Calculated values of the free energy of reaction on the formation of hydroxyl halide radical anion from the hydroxyl radical and halide anion were endothermic for chloride but exothermic for bromide and iodide, which is consistent with experimental values of equilibrium constants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号