首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microporous SiO2 and SiO2/MO2 (M=Ti, Zr, Al; 10 mol% MOx) materials for gas separation membrane applications have been prepared from polymeric sols. Characterization of these sols with SAXS showed that the mean fractal dimension of the SiO2 sols is 1.3–1.4 with a radius of gyration of approximately 2.5 nm. The dried and calcined films are microporous and the pore size distribution was bimodal with maxima at diameters of 0.5 nm and 0.75 nm. For the SiO2/TiO2, SiO2/ZrO2 and SiO2/Al2O3 systems, much milder reaction conditions proved to be necessary to obtain sols with comparable fractal dimensions due to the high reactivity of the Ti/Zr/Al-alkoxides. Microporous supported membranes with molecular sieve-like gas transport properties can be prepared from a relatively wide range of sol structures: from polymers too small to characterize with SAXS to structures with fractal dimensions: 1<d f<2.04.  相似文献   

2.
Binary sols and gels of SiO2-Al2O3 were prepared using tetraethyl orthosilicate and each of four aluminum compounds; aluminum di (sec-butoxide) ethylacetoacetic ester chelate (AC), aluminum nitrate nonahydrate (AN), aluminum formoacetate (AF), and boehmite sol (BS) made from aluminum i-propoxide. The structure and the evolution of the Si-O-Al bonds in SiO2-Al2O3 sols and gels were investigated by 27Al nuclear magnetic resonance (NMR), Infrared absorption spectra, DTA, and X-ray diffraction. The formation of Si-O-Al bonds differs depending on the aluminum compounds used as raw materials. The ratio of Al(IV) to {Al(IV) + Al(VI)} is related to the microstructural homogeneity of the gels. When AC is used as a raw material, the Si-O-Al bonds are formed in the sol state and resultant gel shows good microstructural homogeneity. In case of AN, the Si-O-Al bonds are not formed either in the sol or the wet gel state. The bonds are formed by drying the gel before heat-treatment temperature reaches 300 400°C, resulting in good microstructural homogeneous gel. When AF is used, the Si-O-Al bonds are formed in the sol state but the ratio of Al(IV) to {Al(IV) + Al(VI)} is lower than when using AC. Microstructural homogeneity of the gel is ranked between AC or AN and BS. Using BS, the Si-O-Al bonds are not formed in the sol solution, and the change in the coordination number of the gel is similar to that of boehmite gel. The Microstructural homogeneity of the gel is the worst among the BS gels, which were prepared by using the four aluminum raw materials.  相似文献   

3.
Titania coated silica nanoparticles were prepared through a sol-gel process using peptized TiO2 nano-sols. The TiO2 sols were obtained by peptization, the process of redispersing a coagulated colloid, and were coated on SiO2 particles by the control of the weight ratio of TiO2/SiO2 and the pH of the mixture in aqueous solution. At pH 4.5 the difference of zeta-potential between SiO2 and TiO2 maximized and then the TiO2-coated SiO2 particles with highest TiO2 contents (20%) were obtained without the self-aggregation of TiO2 sols. The morphologies of particles were characterized with field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) and the isoelectric points (IEP) of particles were measured by zeta potential. The nature of exposed titanium ions on the surface of titania-coated silica nanoparticles was elucidated by X-ray photoelectron spectroscopy (XPS).  相似文献   

4.
Sol-gel hybrid organic-inorganic and inorganic SiO2-based protective coatings with and without added 3 m glass particles were developed and tested for their corrosion and wear behavior of an stainless steel substrate (AISI316L). The corrosion resistance greatly increases by incorporating glass particles in the sols. The incorporation of particles in the coatings allows the synthesis of thicker crack-free coatings. On the other hand, the corrosion resistance increases for coatings with a higher organic content obtained at lower sintering temperature. These coatings are also highly stable in saline aqueous solutions. However, the wear resistance is badly affected by the hybrid character of the SiO2 matrix. The optimum coating process in terms of corrosion and wear resistance, appears to be a hybrid system with a dense SiO2 network achieved at intermediate sintering temperatures.  相似文献   

5.
Pyrolysis of mixed titanium and silicon metal halides produces a commercial glass (7.4% TiO2) with ultra-low thermal expansion that is essentially zero over the temperature range of 0 to 300°C. A colloidal particulate gel process involving potassium silicate, titania sol and formamide gel reagent was found to produce glass compositions with similar low expansion behavior. Due to the strongly basic nature of the precursor solutions, special titania sols had to be prepared that were stable in these alkali silicate solutions. The preferred TiO2 sols were those containing quaternary ammonium stabilizing counter-ions. These sols served not only as the source of homogeneously distributed titania, but they may also serve as nucleating species that contribute to particle growth and pore size control of the gel network. The large pore (0.3 µm) TiO2/SiO2 gel structures were easily dealkalized, dried and sintered to uncracked glass shapes. Plates up to 9.5 cm×6.6 cm× 0.5 cm thick and some intricate cast shapes were produced and their glass properties evaluated.  相似文献   

6.
Homogeneous xSiO2-(1−x)ZrO2 coatings have been prepared onto glass-slides, monocrystalline Si and stainless steel (AISI 304) using sols prepared via acid and basic catalysis. Zirconium tetrabutoxide (TBOZr), zirconium n-propoxide (TPZ), tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES) were used as precursors of zirconia and silica, respectively. The different parameters involved in the synthesis procedure, as molar ratios H2O/alkoxides, NaOH/alkoxides, and sintering temperature have been analysed, correlating the stability and rheological properties of the sols. The evolution and structure of the sols and coatings have been studied by FTIR. Coatings have been prepared by dipping from acid and basic sols. Electrophoretic Deposition (EPD) technique has also been used to prepare coatings onto stainless steel from basic particulate sols in order to increase the critical thickness. A maximum thickness of 0.5 μ m was reached by both dipping and EPD process for 75SiO2: 25 ZrO2 composition. The critical thickness decreases with ZrO2 amount depending strongly of the drying conditions. Si–O–Zr bonds have been identified by FTIR, indicating the existence of mixed network Si–O–Zr in the coatings obtained by the different routes. Crystallisation of ZrO2(t) was only observed at high sintering temperature (900C) by FTIR and confirmed by DRX.  相似文献   

7.
The aggregation stability of 1 : 1 and 3 : 1 (by volume) binary mixtures of two hydrophobic (SiO2–FeOOH), one hydrophobic and one hydrophilic (SiO2–ZrO2, SiO2–CeO2), and two hydrophilic (CeO2–natural diamond) sols was studied by photometry over a wide range of KCl concentrations at pH 6 and 3. The stability of the mixed binary sols was determined by the stability of the sol with a predominant particle number concentration. In the SiO2–FeOOH system, the phenomenon of heteroadagulation stabilization was caused by the electrostatic factor of the stability of adsorbed SiO2 particles and, in the SiO2–ZrO2 system, by the structural factor of the stability of adsorbed hydrophilic ZrO2 particles. The stability of binary mixtures containing one or two hydrophobic components is qualitatively explained in terms of the Derjaguin theory of heterocoagulation of hydrophobic colloids. The stability of the binary system of two hydrophilic components (CeO2–natural diamond) is determined by the structural component of the interaction energy of particles.  相似文献   

8.
The effect of the sign and the value of a relative change in the -potentials of -AlOOH and SiO2 sols on the composition homogeneity of the products of their mixing, as well as on the phase formation during thermal treatment of the latter is studied. A sample prepared by mixing -AlOOH and SiO2 sols at pH 2.5 demonstrates the highest homogeneity of mixed gels and forms the only phase of mullite 3Al2O3 · 2SiO2 during its thermal treatment (1350°C). At this pH value, a slow heterocoagulation of the sol particles with different signs of the -potential takes place. The coagulation of the sols at pH 1.5 and 5.0 results in the preparation of more or less heterogeneous mixed products and the formation of several phases during thermal treatment.  相似文献   

9.
Water-borne raspberry-like PMMA/SiO2 nanocom-posite particles were prepared via free radical copolymerization of methyl methacrylate (MMA) with 1-vinylimidazole (1-VID) in the presence of ultrafine aqueous silica sols. The acid-base interaction between hydroxyl groups (acidic) of silica surfaces and amino groups (basic) of 1-VID was strong enough for promoting the formation of long-standing stable PMMA/SiO2 nanocomposite particles when 10 mol% or more 1-VID as auxiliary monomer was used. The average particle sizes and the silica contents of the nanocomposite particles were in the ranges from 120–330 nm and 15%–20%, respectively. TEM and SEM observations indicated a raspberry-like morphology of the obtained nanocomposite particles. __________ Translated from Chemical Journal of Chinese Universities, 2005, 26(7) (in Chinese)  相似文献   

10.
A novel modified base-catalyzed Sol-Gel process containing polyvinyl alcohol (PVA) has been proposed to prepare the porous SiO2 film. In this process, the growth of the sol particles was artificially broken off and controlled by acid-stabilising agent and PVA. As a result, a uniform and stable precursor solution was obtained in which the size of sol particles was stable. This new process efficiently overcomes the shortcomings of the traditional base-catalysed Sol-Gel process and can be employed to prepare porous SiO2 films with desired porosity and thickness. The influence of the catalyst, the reaction temperature, the pH value, the stabilizing agent and the PVA additive on the size of the SiO2 sol particles is systematically studied in part I.  相似文献   

11.
Herein, we report on the synthesis of film-forming poly(styrene-co-butyl acrylate-co-acrylic acid)/SiO2 [P(St-BA-AA)/SiO2] nanocomposites by in situ formation of SiO2 nanoparticles from TEOS via sol–gel process in the presence of poly(acrylic acid) (PAA)-functionalized poly(styrene-co-butyl acrylate) [P(St-BA)] particles fabricated by soap-free emulsion polymerization. The formed silica particles could be absorbed by polyacrylate chains on the surface of PAA-functionalized P(St-BA) particles; thus, raspberry-like polymer/silica nanocomposites would be obtained. Transmission electron microscopy, Fourier transform infrared spectroscopy, attenuated total reflectance infrared spectrum, ultraviolet–visible transmittance spectra, and thermogravimetric analysis were used to characterize the resulting composites. The results showed that the hybrid polymer/silica had a raspberry-like structure with silica nanoparticles anchored on the surface of polymer microspheres. The thermal, fire retardant, and mechanical properties and water resistance of the film were improved by incorporating silica nanoparticles, while the optical transmittance was seldom affected due to nanosized silica particles uniformly dispersed in the film.
Figure
Film-forming polymer/silica nanocomposites with raspberry-like morphology have been successfully prepared via soap-free emulsion polymerization followed by the sol–gel process. The number and the size of SiO2 particles coated on the surface of polymer particles can be adjusted by the amounts of TEOS and ammonia. After the film formation of polymer/silica nanocomposites, silica nanoparticles are homogeneously dispersed within the film without aggregation.  相似文献   

12.
Vanadium pentoxide (V2O5) sols have been used in conductive coatings and related applications [1, 2, 3]; however, the changes which may occur in the properties of these coatings with sols of different ages have not been carefully shown. Properties which may be dependent on the age of the sol (sol viscosity, film morphology and conductance) were measured in this work. The coating sols were prepared by ion-exchange of sodium metavanadate solutions.It was found that the coating thickness, sol viscosity, and surface morphology of the coatings were directly related to the age of the sol used. The dried coating thickness increased from 3 microns to 20 microns over a 30 day period. The sol viscosity increased from 1 centipoise to near 2 centipoise. The surface morphology of the coatings changed from that of a featureless surface at day 1 to a continual coverage of micron-sized fibers as the coating sols aged. The conductivity of the coatings, though, was unaffected by the age of the sol. The coating properties were correlated to the amount of polymerization of dissolved precursors in solution.  相似文献   

13.
Stabilised titania sols were prepared using an additive free particulate sol-gel route, via electrostatic stabilisation mechanism, with various processing parameters. Peptisation temperature, 50°C and 70°C, and TiO2 concentration, 0.1, 0.2 and 0.4 molar, were chosen as processing parameters during sol preparation. Results from TiO2 particle size and zeta potential of sols revealed that the smallest titania hydrodynamic diameter (13 nm) and the highest zeta potential (47.7 mV) were obtained for the sol produced at the lower peptisation temperature of 50°C and lower TiO2 concentration of 0.1 M. On the other hand, between the sols prepared at 70°C, smaller titania particles (20 nm) and higher zeta potential (46.3 mV) were achieved with increasing TiO2 concentration up to 0.4 M. X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) results of produced powders annealed at different temperatures showed that the 300°C annealed powder made from 0.1 M sol prepared at 50°C was a mixture of anatase and brookite, corresponding to a major phase of anatase (∼95% estimated), with the smallest average crystallite size of 1.3 nm and the highest specific surface area (SSA) of 193 m2/g. Furthermore, increasing TiO2 concentration up to 0.4 molar for the sols prepared at 70°C resulted in decreasing the average crystallite size (1.9 nm at 300°C) and increasing SSA (116 m2/g at 300°C) of the powders annealed at different temperatures. Anatase-to-rutile phase transformation temperature was increased with decreasing peptisation temperature down to 50°C, whereas TiO2 concentration had no effect on this transition. Anatase percentage increased with decreasing both peptisation temperature and TiO2 concentration. Such prepared powders can be used in many applications in areas from photo catalysts to gas sensors.  相似文献   

14.
Electrochemical properties of amorphous and crystalline V2O5 films, dip-coated from V-oxoisopropoxide sols and thermally treated at various temperatures (100, 150, 200 and 300°C), have been studied in extended potential range, i.e. from 1.4 to –1.6 V vs. Ag/AgCl in 1M LiClO4/propylen carbonate (PC) electrolyte. The formation of various lithiated (-, -, - and -Li x V2O5) phases was correlated with the values of insertion coefficient x obtained from cyclic voltammograms (CV) of crystalline V2O5 films (300°C). Reversible charging was observed when films were cycled up to –1.0 V vs. Ag/AgCl, while the extension of the potential to –1.3 V vs. Ag/AgCl change the CV of films irreversibly. Charging of crystalline V2O5 films was followed by the help of in-situ UV-visible spectroscopy, that revealed the intensity variations of the polaron absorption above 600 nm and the presence of the absorbing V3+ species between 550 and 650 nm. Ex-situ IR spectra of the crystalline films charged/discharged at –1.6V/1.4V vs. Ag/AgCl confirmed the amorphisation of the films' structure.  相似文献   

15.
The preparation of spinnable sols has been developed to obtain a new type of sol-gel derived pure alumina fiber. The starting material was aluminum sec-butoxide, which was modified in a first step with glycolether, e.g., isopropoxyethanol. This leads to a partial replacement of alkoxy groups via alcoholysis and a change of the precursor structure from a trimeric to a tetrameric one. In the second step, carboxylation, the transformation to six-coordinated aluminum could be observed. Due to the formation of a sol with Newtonian flow behavior after hydrolysis, gel fibers up to several kilometers long could be drawn directly from the clear colorless sol with spinning velocities up to 200 m/min. The addition of an organic filament-forming polymer is not necessary. The sol is spinnable for periods up to one year. The transformation of the gel fiber to -Al2O3 occurs at 1150° C.  相似文献   

16.
Aqueous titanate sols were prepared by reactions of titanium tetraisopropoxide (TIP) with -hydroxycarboxylic acids in water. IR and Raman spectra, and elemental analyses of the precipitates obtained from the sols revealed that the carboxylates were chelated to titanium but the Ti species were polymerized to form a cluster that had a colloidal nature. Spin-coating of titania (TiO2) thin films from these sols was also examined. Interestingly, it was found that (004) preferentially oriented anatase films with refractive index of 2.54 were obtained from TIP-lactic acid-NH3 (1:1:1, molar ratio) aqueous sol. This crystallographic orientation was characteristic of the TIP-lactic acid-NH3 (1:1:1) system, and was not affected by the kinds of substrates used and the heating rate of the film. TEM observation indicated that small anatase grains had already formed at 200°C. Therefore, the crystallographic orientation might depend strongly on the structure of the chemical species of the precursor solutions.  相似文献   

17.
SiO2-TiO2-ZrO2 and 5Na2O·95(SiO2 + TiO2 + ZrO2) gels were synthesized and role of Na2O in gel formation and crystallization behavior of gels were studied. From Si(OC2H5)4, Ti(iso-OC3H7)4, Zr(n-OC3H7)4 and NaOCH3 solutions in EtOH without H2O, transparent and opaque gels were obtained. Opaque bulk gels, rich in TiO2 or ZrO2 composition in Na2O containing SiO2-TiO2-ZrO2 system, contain agglomerated spherical particles of diameter small <10 m, in contrast with opaque gels having large particles <30 m in alkali-free SiO2-TiO2-ZrO2 system. Crystallization temperature (Tc) was measured by DTA on dried gels. Compared with the alkali-free SiO2-TiO2-ZrO2 gels, 5 mol% Na2O containing gels gave lower Tc in SiO2 rich compositions and higher in TiO2 rich or ZrO2 rich compositions.  相似文献   

18.
The aim of this work has been the preparation and evaluation of sol-gel coatings for clinical applications. Research was focussed in the development of highly corrosion resistant and/or bioactive sol-gel coatings onto AISI 316L stainless steel. Hybrid SiO2 sol-gel coatings inhibited corrosion and Fe diffusion, although no signal of bioactivity was detected. The inclusion of Ca- and P-alcoxides in the sol composition did not promote bioactivity. Bioactive coatings were obtained from suspensions prepared by adding glass (CaO·SiO2·P2O5) particles to an hybrid organic-inorganic SiO2 sol. The dissolution of glass particles promoted in vitro induction of apatite along with a slight reduction in the corrosion resistance of coated pieces. By combining an inner SiO2 hybrid film acting as barrier against corrosion with an outer coating containing bioactive glass particles, a significant improvement in the electrochemical behaviour was observed. This double-layered coating showed in vitro signals of bioactivity, and preliminary in vivo tests gave promising results.  相似文献   

19.
The dispersion and coagulation phenomena of iron(III) hydroxide sols were investigated as a function of pH in the absence and presence of amino acids. The amino acids used were glycine,L--alanine,DL--amino-n-butyric acid,L-valine,L-leucine,L- isoleucine,L-glutamic acid andL-arginine. The turbidity measurements of the iron-(III) hydroxide sols, which were prepared by pouring an aqueous iron(III) chloride solution into boiling distilled water, were carried out using a spectrophotometer with an addermixer device and an automatic recording system. The zeta potentials of sol particles were obtained by ultra-microelectrophoresis. The change in turbidity of the sol, as a measure in stability of the sol, increased with increasing pH in the region of pH 2–8, and reached a maximum at the isoelectric point of the particles. The coagulation at the isoelectric point was prevented by adding amino acids, and the stabilization had an optimum point at concentrations which depended upon the kinds of amino acids. The remarkable dispersing effect of amino acids which occurred near the isoelectric point of the particles at the suitable concentration of the ammo acids may be due to the steric protection by amino acid adsorbed. The protective action was explained according to a modified DLVO theory, the modification for London-van der Waals force being applied in order to take the effect of the adsorption layer into account.  相似文献   

20.
Thin silica and silica-titania films doped with sulfide nanocrystals of controlled size were fabricated by a method based on the preparation of colloidal particles and their introduction into a glassy matrix through the sol-gel method. Colloidal sols of composition HgxCd1-xS and PbxCd1-xS (with x ranging from 0 to 1) were prepared and used to dope alkoxide solutions for the deposition of thin silica and silica-titania films. Optical absorption spectra were taken on both precursor colloidal sols and derived doped films. X-ray diffraction characterization gave structural information on the nature and size of particles in powders obtained by precipitation from colloidal sols and in doped films. The advantages and limits of the investigated systems are discussed in light of possible applications. The nonlinear properties of the most interesting PbS-doped planar waveguides have been investigated in the near-infrared, at 1.064 m. A reversible nonlinear effect was measured, with n 2 values ranging from -5 to -20×10-9 cm2/kW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号