首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of nanosize silicides films by implantation of B, P, Ba, and alkali metal atoms in Si(111) and Si(100) followed by thermal annealing is studied by electron spectroscopy and slow-electron diffraction methods. It is shown that implantation of ions with a large dose D > 1016 cm?2 and short-term heating lead to the formation of thin silicides films with new surface superstructures: \(Si(111) - (\sqrt 3 \times \sqrt 3 )R30^ \circ - B\) , Si(100)-2 × 2Ba, Si(111)-1 × 1P, etc.  相似文献   

2.
Careful NMR measurements on a very lightly-doped reference silicon sample provide a convenient highly precise and accurate secondary chemical shift reference standard for 29Si MAS-NMR applicable over a wide temperature range. The linear temperature-dependence of the 29Si chemical shift measured in this sample is used to refine an earlier presentation of the paramagnetic (high-frequency) 29Si resonance shifts in heavily-doped n-type silicon samples near the metal–nonmetal transition. The data show systematic decreases of the local magnetic fields with increasing temperature in the range 100–470 K for all samples in the carrier concentration range from 2×1018 cm−3 to 8×1019 cm−3. This trend is qualitatively similar to that previously observed for the two-orders of magnitude larger 31P impurity NMR resonance shifts in the same temperature and concentration ranges. The 29Si and 31P resonance shifts are not related by a simple scaling factor, however, indicating that impurity and host nuclei are affected by different subsets of partially-localized extrinsic electrons at all temperatures.  相似文献   

3.
4.
The thermal conductivity of isotopically enriched 28Si (enrichment better than 99.9%) was redetermined independently in three laboratories by high precision experiments on a total of four samples of different shape and degree of isotope enrichment in the range from 5 to 300 K with particular emphasis on the range near room temperature. The results obtained in the different laboratories are in good agreement with each other. They indicate that at room temperature the thermal conductivity of isotopically enriched 28Si exceeds the thermal conductivity of Si with a natural, unmodified isotope mixture by 10±2%. This finding is in disagreement with an earlier report by Ruf et al. At ∼26 K the thermal conductivity of 28Si reaches a maximum. The maximum value depends on sample shape and the degree of isotope enrichment and exceeds the thermal conductivity of natural Si by a factor of ∼8 for a 99.982% 28Si enriched sample. The thermal conductivity of Si with natural isotope composition is consistently found to be ∼3% lower than the values recommended in the literature.  相似文献   

5.
The optical reflectivity spectrum (2500–5000 Å) of extremely heavily phosphorus (P)-doped Si has been studied. The E1 and E2 peaks, which represent the completeness of the Si crystal, are slightly affected when doping concentrations are less than 1021 cm-3 (2% Si : P). However,they appreciably degrade as the doping concentration increases from 1021 to 5×1021cm-3 (10% Si : P). As the result of band calculations using a supercell configuration and pseudopotential method, we have been able to ascribe this behavior to the substitutional disorder effect.  相似文献   

6.
J.C. Fan 《Applied Surface Science》2008,254(20):6358-6361
p-Type ZnO:As films with a hole concentration of 1016-1017 cm−3 and a mobility of 1.32-6.08 cm2/V s have been deposited on SiO2/Si substrates by magnetron sputtering. XRD, SEM, Hall measurements are used to investigate the structural and electrical properties of the films. A p-n homojunction comprising an undoped ZnO layer and a ZnO:As layer exhibits a typical rectifying behavior. Our study demonstrates a simple method to fabricate reproducible p-type ZnO film on the SiO2/Si substrate for the development of ZnO-based optoelectronic devices on Si-based substrates.  相似文献   

7.
Hall measurements at low temperaturesT<50 K have been performed on Si:In (N In1017 cm–3) and Si:Ga (N Ga1018 cm–3) with infrared photoexcitation of holes into the valence band. It is shown in quantitative agreement with a theoretical model that the population of shallow acceptors, e.g. B and Al, which are present as impurities in concentrations ofN B,Al1012-1014 cm–3 strongly affects the photoexcited hole concentration. Photo-Hall measurements can, therefore, serve as a tool for the determination of low impurity acceptor concentrations in the case of high In- or Ga-doping. Hole capture coefficientsB In=6×10–4 (T/K)–1,8 cm3 s–1 andB Ga=2×10–4 (T/K)–1 cm3 s–1 have been determined.  相似文献   

8.
The electroreflectance and Raman scattering spectra of several samples of glow-discharge amorphous Si:F:H films have been investigated. We have observed for the first time modulated optical spectroscopy structure above the absorption edge for a disordered semiconductor. The energy positions of these structures, at 3.4 and 4.5 eV, correspond to peaks seen in crystalline silicon. In particular, the latter feature can be related to the degree of disorder in the material. Also we have seen for the first time in disordered silicon (except for ion-damaged, laser annealed samples) peaks in the Raman spectra intermediate between amorphous (465 cm-1) and crystalline materials (522 cm-1). These experimental results provide strong evidence that a-Si:F:H possesses “microcrystalline” or some other intermediate range order (i.e., an improved connectivity between the elements of the random network.)  相似文献   

9.
Amorphous Si and Ge are doped with Mn by co-sputtering. The electrical conductivity is incresed by as much as a factor of 106~107 in some cases by the addition of several at .% Mn. The temperature dependence of the conductivity shows the variable range hopping conduction for both samples with and without Mn. The results can be interpreted by the presence of two conduction processes; the variable range hopping through dangling bonds and that through Mn sites.  相似文献   

10.
Angle resolved photoemission studies of the Si 2p and Si 1s core levels and the Si KL2,3L2,3 Auger transitions from SiO2/SiC samples are reported. Most samples investigated were grown in situ on initially clean and well ordered √3×√3 reconstructed 4H-SiC(0 0 0 1) surfaces but some samples were grown ex situ using a standard dry oxidation procedure. The results presented cover samples with total oxide thicknesses from about 5 to 118 Å. The angle resolved data show that two oxidation states only, Si+1 and Si+4, are required to explain and model recorded Si 2p, Si 1s and Si KLL spectra.The intensity variations observed in the core level components versus electron emission angle are found to be well described by a layer attenuation model for all samples when assuming a sub-oxide (Si2O) at the interface with a thickness ranging from 2.5 to 4 Å. We conclude that the sub-oxide is located at the interface and that the thickness of this layer does not increase much when the total oxide thickness is increased from about 5 to 118 Å.The SiO2 chemical shift is found to be larger in the Si 1s level than in the Si 2p level and to depend on the thickness of the oxide layer. The SiO2 shift is found to be fairly constant for oxides less than about 10 Å thick, to increase by 0.5 eV when increasing the oxide thickness to around 25 Å and then to be fairly constant for thicker oxides. An even more pronounced dependence is observed in the Si KLL transitions where a relative energy shift of 0.9 eV is determined.The relative final state relaxation energy ΔR(2p) is determined from the modified Auger parameter. This yields a value of ΔR(2p)=−1.7 eV and implies, for SiO2/SiC, a “true” chemical shift in the Si 2p level of only ≈0.4 eV for oxide layers of up to 10 Å thick.  相似文献   

11.
Pulsed 11B NMR measurements performed on an aSi: (B,H) film containing ~10 atomic % B reveal the presence of two distinct boron sites. The spin-spin relaxation time T2 is frequency independent and of a magnitude which indicates that the boron is clustered rather than uniformly distributed. The large quadrupolar coupling inferred from the NMR linewidth strongly suggests that most of the boron in aSi: (B,H) does not exist in tetrahedral sites but is threefold coordinated.  相似文献   

12.
We have mentioned previously that in the third part of the present series of papers, a variety of n-doping associated phenomena will be treated. Instead, we have decided that this paper, in which the subject treated is diffusion of Si into GaAs, shall be the third paper of the series. This choice is arrived at because this subject is a most relevent heterostructure problem, and also because of space and timing considerations. The main n-type dopant Si in GaAs is amphoteric which may be incorporated as shallow donor species SiGa + and as shallow acceptor species SiAs -. The solubility of SiAs - is much lower than that of SiGa + except at very high Si concentration levels. Hence, a severe electrical self-compensation occurs at very high Si concentrations. In this study we have modeled the Si distribution process in GaAs by assuming that the diffusing species is SiGa + which will convert into SiAs - in accordance with their solubilities and that the point defect species governing the diffusion of SiGa + are triply-negatively-charged Ga vacancies VGa 3-. The outstanding features of the Si indiffusion profiles near the Si/GaAs interface have been quantitatively explained for the first time. Deposited on the GaAs crystal surface, the Si source material is a polycrystalline Si layer which may be undoped or n+-doped using As or P. Without the use of an As vapor phase in the ambient, the As- and P-doped source materials effectively render the GaAs crystals into an As-rich composition, which leads to a much more efficient Si indiffusion process than for the case of using undoped source materials which maintains the GaAs crystals in a relatively As-poor condition. The source material and the GaAs crystal together form a heterostructure with its junction influencing the electron distribution in the region, which, in turn, affects the Si indiffusion process prominently. Received: 19 April 1999 / Accepted: 3 May 1999 / Published online: 4 August 1999  相似文献   

13.
The Cu films are deposited on two kinds of p-type Si (111) substrates by ionized duster beam (ICB) technique. The interface reaction and atomic diffusion of Cu/Si (111) and Cu/SiO2/Si (111) systems are studied at different annealing temperatures by x-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS). Some significant results are obtained: For the Cu/Si (111) samples prepared by neutral dusters, the interdiffusion of Cu and Si atoms occurs when annealed at 230℃. The diffusion coefficients of the samples annealed at 230℃ and 500℃ are 8.5 ×10^-15 cm^2.s^-1 and 3.0 ×10^-14 cm^2.s^-1, respectively. The formation of the copper-silicide phase is observed by XRD, and its intensity becomes stronger with the increase of annealing temperature. For the Cu/SiO2//Si (111) samples prepared by neutral dusters, the interdiffusion of Cu and Si atoms occurs and copper silicides are formed when annealed at 450℃. The diffusion coefficients of Cu in Si are calculated to be 6.0 ×10^-16 cm^2.s^-1 at 450℃, due to the fact that the existence of the SiO2 layer suppresses the interdiffusion of Cu and Si.  相似文献   

14.
We investigate, both experimentally and theoretically, current and capacitance (I–V/C–V) characteristics and the device performance of Si/SiO2/Si single-barrier varactor diodes (SBVs). Two diodes were fabricated with different SiO2 layer thicknesses using the state-of-the-art wafer bonding technique. The devices have very low leakage currents (about 5×10-2 and 1.8×10-2 mA/mm2) and intrinsic capacitance levels of typically 1.5 and 50 nF/mm2 for diodes with 5-nm and 20-nm oxide layers, respectively. With the present device physical parameters (25-mm2 device area, 760-μm modulation layer thickness and ≈1015-cm-3 doping level), the estimated cut-off frequency is about 5×107 Hz. With the physical parameters of the present existing III–V triplers, the cut-off frequency of our Si-based SBV can be as high as 0.5 THz. Received: 9 February 2001 / Accepted: 9 February 2001 / Published online: 23 March 2001  相似文献   

15.
The structure and the electrical and magnetic properties of Mn-implanted Si, which exhibits ferromagnetic ordering at room temperature, are studied. Single-crystal n- and p-type Si wafers with high and low electrical resistivities are implanted by manganese ions to a dose of 5 × 1016 cm?2. After implantation and subsequent vacuum annealing at 850°C, the implanted samples are examined by various methods. The Mn impurity that exhibits an electric activity and is incorporated into the Si lattice in interstitial sites is found to account for only a few percent of the total Mn content. The main part of Mn is fixed in Mn15Si26 nanoprecipitates in the Si matrix. The magnetization of implanted Si is found to be independent of the electrical resistivity and the conductivity type of silicon and the type of implanted impurity. The magnetization of implanted Si increases slightly upon short-term postimplantation annealing and disappears completely upon vacuum annealing at 1000°C for 5 h. The Mn impurity in Si is shown to have no significant magnetic moment at room temperature. These results indicate that the room temperature ferromagnetism in Mn-implanted Si is likely to be caused by implantation-induced defects in the silicon lattice rather than by a Mn impurity.  相似文献   

16.
The possibility of quantitative SIMS determination of28-30Si isotope concentrations in silicon samples using a TOF.SIMS-5 spectrometer is shown. Th e isotope composition of a large number of Si samples, namely epitaxial Si layers with a natural isotope ratio, amorphous Si films depleted of28Si isotope (deposited on natural Si substrates), and samples enriched with 28Si isotope (manufactured by VITCON) is investigated. Substantial variations in the 29Si/30Si isotope ratio (from 1.51 for the natural content up to 25 in the case of limiting enrichment with 28Si isotope) are revealed.  相似文献   

17.
Semi-spherical SiGe/Si nano-structures of a new type are presented. Epitaxial islands of 30–40 nm in base diameter and 11 nm in height and having a density of about 6×1010 cm-2 were produced on (001) Si by molecular beam epitaxial growth of Si/Si0.5Ge0.5 layers with in situ implantation of 1-keV As+ ions. It was found by cross-section transmission electron microscopy that the islands have a complicated inner structure and consist of a micro-twin nucleus and semi-spherical nano-layers of various SiGe compositions. The nature of the surface patterning is interpreted by stress relaxation through implantation-induced defects. Received: 12 July 2001 / Accepted: 4 September 2001 / Published online: 2 October 2001  相似文献   

18.
The low thermal stability of hydrogenated amorphous silicon (a‐Si:H) thin films limits their widespread use for surface passivation of c‐Si wafers on the rear side of solar cells. We show that the thermal stability of a‐Si:H surface passivation is increased significantly by a hydrogen rich a‐Si:H bulk, which acts as a hydrogen reservoir for the a‐Si:H/c‐Si interface. Based on this mechanism, an excellent lifetime of 5.1 ms (at injection level of 1015 cm–3) is achieved after annealing at 450 °C for 10 min. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Electron spin resonance has been used to study the depth distribution of point defects in Si samples bombarded by N5+ (E=16 MeV) and Si5+ (E=26.8 MeV) ions at 175 and 300 K in the dose range (4–8)×1015 cm−2. It was established that unlike the implantation of moderate-energy Si ions (E ∼ 100 keV), the depth distributions of planar tetravacancies in samples bombarded by ions at 300 K under these conditions have two maxima. The experimental results indicate that the tetravacancy density maximum closer to the surface is formed as a result of secondary defect formation processes. No continuous amorphous layer was observed in the bulk of any of the Si samples. This experimental observation is evidence of defect annealing which takes place when high-energy ions are implanted in Si. Fiz. Tverd. Tela (St. Petersburg) 40, 217–222 (February 1998)  相似文献   

20.
Interdiffusion phenomena, thermal damage and ablation of W/Si and Si/W bilayers and multilayers under XeCl-excimer laser (=308 nm) irradiation at fluences of 0.15, 0.3 and 0.6 J/cm2 were studied. Samples were prepared by UHV e-beam evaporation onto oxidized Si. The thickness of W and Si layers and the total thickness of the structures were 1–20 nm and 40–100 nm, respectively. 1 to 300 laser pulses were directed to the same irradiation site. At 0.6 J/cm2 the samples were damaged even by a single laser pulse. At 0.3 J/cm2 WSi2 silicide formation, surface roughening and ablation were observed. The threshold for significant changes depends on the number of pulses: it was between 3–10 pulses and 10–30 pulses for bilayers with W and Si surfaces, respectively, and more than 100 pulses for multilayers with the same total thickness of tungsten. At 0.15 J/cm2 the periodicity of the multilayers was preserved. Temperature profiles in layered structures were obtained by numerical simulations. The observed differences of the resistance of various bilayers and multilayers against UV irradiation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号