首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 544 毫秒
1.
Simulations have previously shown that, for broadband excitation, adjusting the gain of a local velocity feedback loop to maximise their absorbed power also tends to minimise the kinetic energy of the structure under control. This paper describes an experimental implementation of multiple velocity feedback loops on a flat panel, whose gains can be controlled automatically by an algorithm that maximises their local absorbed power. Taking care to remove excessive phase shift in the control loop allows a stable feedback gain that is high enough to experimentally demonstrate the transition in control action between optimum damping and pinning of the structure. A simple search algorithm is then used to adapt the feedback gains of two control loops to maximise their local absorbed powers, thus demonstrating self-tuning. By measuring the power absorbed by each of these loops and also estimation of the kinetic energy of the plate from velocity measurements for a wide range of the two feedback gains, it is shown that not only does the adaptive algorithm converge to a set of feedback gains that maximise total power absorbed by the two feedback loops, but also that this set of feedback gains is very close to those that minimise the measured kinetic energy of the panel.  相似文献   

2.
为了能够同时检测多个开关的状态,提出了一种基于光反馈半导体激光器的多开关状态检测系统.该系统由半导体激光器、多开关传感网络和数据采集与处理单元组成.多开关传感网络包括多个反馈光路,每个光路由耦合器、光纤和强度反射式光开关构成.所有开关都闭合时,系统没有反馈,激光器输出连续光.当有开关被打开时,光反馈使系统工作在混沌状态.根据系统输出信号的自相关曲线中与各开关位置对应处的峰值是否大于预设阈值来判断开关的状态,通过编程令其它位置处的峰值为零来消除干扰峰.搭建了3个开关的实验系统,分别对不同开关状态下的系统进行检测,结果表明该系统可以准确检测单个或多个开关的状态.  相似文献   

3.
We report on chaos synchronization in both unidirectionally and bidirectionally coupled multiple time delay laser diodes with electro-optical feedback. We derive existence and sufficient stability conditions for the synchronization regimes. We calculate the Lyapunov exponents, information dimension, and Kolmogorov-Sinai entropy for a single and double delay time lasers to demonstrate that multiple time delay laser system can offer higher complexity than a single time delay laser. We demonstrate that in coupled multiple time delay lasers additional feedback(s) can play a stabilizing role. We compare the synchronization quality for closed loop and open loop receiver laser configurations and find better synchronization quality for partially open loop receiver (when the receiver laser has only one feedback loop), than the open loop receiver configuration (when the receiver contains no feedback loops). We also study the effect of the feedback phase on the correlation coefficient between the interacting laser systems. Analytical results are fully supported by numerical simulations.  相似文献   

4.
Lee  E.-H.  Kim  K.H.  Lee  H.K. 《Optical and Quantum Electronics》2002,34(12):1167-1174
This paper presents, in the form of a review, some of the results of our study addressing the advantages and disadvantages of the nonlinear effects in optical fibers for their use in high-speed, high capacity, all-optical telecommunication applications. Nonlinear effects that we cover include: self-phase modulation (SPM), cross-phase modulation (CPM), stimulated Raman scattering (SRS), and stimulated Brillouin scattering (SBS). We have found that nonlinear effects can play useful and important roles in enhancing the fiber performances and creating new functions by way of fiber lasers, amplifiers, switches, logic devices, demultiplexers, signal format conversion and wavelength conversion devices. But we also have found that they can play degenerative roles limiting the performances of optical fiber communication. Trade-off between the advantages and the disadvantages of the nonlinear effects should be carefully examined in order to utilize their effects to the fullest extent.  相似文献   

5.
Quantum dots in photonic crystals are interesting both as a testbed for fundamental cavity quantum electrodynamics (QED) experiments and as a platform for quantum and classical information processing. We describe a technique to coherently access the QD-cavity system by resonant light scattering. Among other things, the coherent access enables a giant optical nonlinearity associated with the saturation of a single quantum dot strongly coupled to a photonic crystal cavity. We explore this nonlinearity to implement controlled phase and amplitude modulation between two modes of light at the single photon level—a nonlinearity observed so far only in atomic physics systems. We also measured the photon statistics of the reflected beam at various detunings with the QD/cavity system. These measurements reveal effects such as photon blockade and photon-induced tunneling, for the first time in solid state. These demonstrations lie at the core of a number of proposals for quantum information processing, and could also be employed to build novel devices, such as optical switches controlled at the single photon level.  相似文献   

6.
Biological signaling networks comprised of cellular components including signaling proteins and small molecule messengers control the many cell function in responses to various extracellular and intracellular signals including hormone and neurotransmitter inputs, and genetic events. Many signaling pathways have motifs familiar to electronics and control theory design. Feedback loops are among the most common of these. Using experimentally derived parameters, we modeled a positive feedback loop in signaling pathways used by growth factors to trigger cell proliferation. This feedback loop is bistable under physiological conditions, although the system can move to a monostable state as well. We find that bistability persists under a wide range of regulatory conditions, even when core enzymes in the feedback loop deviate from physiological values. We did not observe any other phenomena in the core feedback loop, but the addition of a delayed inhibitory feedback was able to generate oscillations under rather extreme parameter conditions. Such oscillations may not be of physiological relevance. We propose that the kinetic properties of this feedback loop have evolved to support bistability and flexibility in going between bistable and monostable modes, while simultaneously being very refractory to oscillatory states. (c) 2001 American Institute of Physics.  相似文献   

7.
The cardiovascular system incorporates several controlling mechanisms acting as feedback loops over different time horizons. Because of their complex interrelationships, information-based methods such as autonomic information flow (AIF) functions promise to be useful in identifying normal and pathological behavior. Optimal adjustment between those controllers is necessary for healthy global behavior of the organism. We investigated the question as to whether there are typical relationships between short-term and long-term AIF by means of a meta-analysis of several of our own clinical studies of the mortality of patients with multiple organ dysfunction syndrome, heart failure, idiopathic dilated cardiomyopathy, and the length of stay in hospital after abdominal aorta surgery. We found a fundamental association of increased short-term randomness (decreased AIF) and decreased long-term randomness (increased AIF) due to pathology. A systems theoretic validation of this fundamental type of association was done by an appropriate mathematical model using a dissipative system with two feedback loops over different time horizons. The systematic simulation of an increasing collapse of the short feedback loop confirmed the inverse association between short-term and long-term information flow as a fundamental, system inherent type of readjustment that occurs under pathological conditions.  相似文献   

8.
The two nonlinear effects of two-tone suppression and of (2f1-f2)-difference tone creation are measured in a hardware model which consists of 90 sections containing nonlinear feedback loops. The basic data are the level and phase distributions along the 90 sections produced by single tones in the linear passive system which are almost identical to those produced in the nonlinear active system at high levels. Enhancement is created at medium and low input levels resulting in more strongly peaked level-place patterns. Two-tone suppression is, therefore, described as a "de-enhancement" which is produced by the gain reduction in the saturating nonlinearity of the feedback loop in consequence of increasing input levels (that of the feedback loop in consequence of increasing input levels (that of the suppressor as well!). Characteristics of suppression are given in normalized form. The creation of (2f1-f2)-difference tones is based on the same nonlinear effects. In each section, difference-tone wavelets are created which travel--changing level and phase thereby--to their characteristic place, where they add up to a vector sum corresponding to the audible difference tone. In case of cancellation, the vector sum has to be compensated by an additional tone of the same frequency and amount but opposite phase. Based on this strategy of (2f1-f2)-difference tone development, the relevant relations are measured on the model and averaged either in normalized graphs or in equations in order to offer the possibility to simulate the hardware model on the computer. Psychoacoustically measured cancellation data are compared with data measured using the model. The two data sets agree not only in general but also in many details indicating that the model describes cochlear nonlinear preprocessing to a useful approximation.  相似文献   

9.
10.
饶俊峰  洪凌锋  郭龙跃  李孜  姜松 《强激光与粒子束》2020,32(5):055001-1-055001-6
脉冲功率技术在工业和生物医学领域有着广泛的应用,很多应用场合要求输出数百安培的高压脉冲。固态Marx发生器虽已研究多年,但是被广泛采用直插封装的IGBT和MOSFET功率半导体开关管的额定电流通常都低于100 A,无法满足低阻抗负载的应用需求。为提高输出脉冲电流幅值,提出两种多路Marx发生器并联的脉冲电源的拓扑结构,第一种方案采用多路Marx发生器直接并联,第二种是共用一组充电开关管的多路Marx发生器并联。由FPGA提供充放电控制信号,采用串芯磁环隔离驱动方案实现带负压偏置的同步驱动,主电路选用开通速度快、通流能力强的IGBT为主开关的半桥式固态方波Marx电路。实验结果表明,6路16级Marx直接并联的脉冲发生器能输出重频100 Hz高压方波脉冲幅值可达10 kV,在30Ω负载侧输出峰值电流可达300 A,上升时间230 ns。共用充电开关管的6路4级Marx并联发生器在5Ω电阻负载上的输出电流峰值可达300 A,最大输出电流可达460 A,上升时间272 ns。表明多路Marx发生器并联可以有效地减小系统内阻,提高系统带载能力;改进后的并联方案实现大电流脉冲输出的同时,所采用的开关管数量减小近一半,提高了系统的抗干扰能力的同时,降低了脉冲电源的成本;且增加级间并联导线可进一步改善均流效果。  相似文献   

11.
When multiple actuators and sensors are used to control the vibration of a panel, or its sound radiation, they are usually positioned so that they couple into specific modes and are all connected together with a centralized control system. This paper investigates the physical effects of having a regular array of actuator and sensor pairs that are connected only by local feedback loops. An array of 4 x 4 force actuators and velocity sensors is first simulated, for which such a decentralized controller can be shown to be unconditionally stable. Significant reductions in both the kinetic energy of the panel and in its radiated sound power can be obtained for an optimal value of feedback gain, although higher values of feedback gain can induce extra resonances in the system and degrade the performance. A more practical transducer pair, consisting of a piezoelectric actuator and velocity sensor, is also investigated and the simulations suggest that a decentralized controller with this arrangement is also stable over a wide range of feedback gains. The resulting reductions in kinetic energy and sound power are not as great as with the force actuators, due to the extra resonances being more prominent and at lower frequencies, but are still worthwhile. This suggests that an array of independent modular systems, each of which included an actuator, a sensor, and a local feedback control loop, could be a simple and robust method of controlling broadband sound transmission when integrated into a panel.  相似文献   

12.
Schemes integrating inter-carrier interference (ICI) self-cancellation and common phase error (CPE) com- pensation for coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems are investi- gated. The purpose of our research is to counteract the impacts of laser phase noise and fiber nonlinearity. We propose two ICI self-cancellation-based CO-OFDM schemes, and adopt a pilot-aided decision feedback (DFB) loop for CPE compensation. The proposed schemes are compared with conventional CO-OFDM schemes at the same spectral efficiency. Simulations show that our schemes can not only enhance laser linewidth tolerance of the CO-OFDM system, but also present strong robustness against fiber nonlinearity.  相似文献   

13.
《Physics letters. A》2019,383(24):3025-3029
We investigate the formation and propagation of vector vortex solitons (VSs) and unipolar solitons (USs) in a cold coherent atomic gas with a Bessel lattice (BL). The system considered is a gas with a tripod level configuration. Owing to the big enhancement of Kerr nonlinearity contributed by the electromagnetically induced transparency (EIT), a weak vector vortex soliton can be effectively formed with ultraslow propagation velocity. We also demonstrate that the characteristics of two-dimensional VSs and USs can be controlled and manipulated by adjusting the parameters of BL. Results obtained may be useful for designing all-optical switches at low light levels.  相似文献   

14.
We measure the Kerr-nonlinear index of refraction of a three-level Lambda-type atomic system inside an optical ring cavity. The Kerr nonlinearity is modified and greatly enhanced near atomic resonant conditions for both probe and coupling beams. The Kerr nonlinear coefficient n(2) changes sign when the coupling beam frequency detuning switches sign, which can lead to interesting applications in optical devices such as all-optical switches.  相似文献   

15.
This study is concerned with the analysis and design of a tuneable vibration absorber, which is composed by a flexible beam with a clamping block in the middle and two masses symmetrically mounted at the two ends. The free length of the beam is used to accommodate piezoelectric strain actuators. The two masses at the ends are equipped with inertial accelerometers. This arrangement is used to generate two independent acceleration feedback control loops that produce virtual mass effects, which shift the absorbing frequency of the device. Another arrangement is also studied where the two accelerometer outputs are time-integrated twice in order to implement displacement feedback loops that change the beam stiffness to shift the characteristic frequency of the device. The two feedback approaches are first analysed theoretically, using a mobility-impedance model, and then experimentally on a prototype absorber unit. The stability of the feedback loops is studied using the Nyquist criterion in order to estimate the limits on the tuneable range of frequencies which are set by the maximum stable feedback gains. The study indicates that the stability margins for the acceleration feedback loops substantially depend on the application of an appropriate low-pass filter. On the contrary, the implementation of displacement feedback gives better stability margins.  相似文献   

16.
This paper is concerned with decentralised velocity feedback for the control of vibration on a flexible structure. Previous studies have shown that a direct velocity feedback loop with a collocated force actuator produces a damping action. Multiple velocity feedback control loops thus reduce the vibration and sound radiation of structures at low frequency resonances, where the response is controlled by damping. However, if the control gains are too high, so that the response of the structure at the control point is close to zero, the feedback control loops will pin the panel at the control positions and thus no damping action is generated. Therefore, in order to maximise the active damping effect, the feedback gains have optimum values and the loops need to be properly tuned.In this paper, a numerical investigation is performed to investigate the possibility of self-tuning the feedback control gains to maximise the power absorbed by the control loops and hence maximise the active damping. The tuning principle is first examined for a single feedback loop for different excitation signals. The tuning of multiple control loops is then considered and the implementation of a practical tuning algorithm is discussed.  相似文献   

17.
Mechanical systems may experience undesirable and unexpected behavior and instability due to the effects of nonlinearity of the systems. Many kinds of control methods to decrease or eliminate the effects have been studied. In particular, bifurcation control to stabilize or utilize nonlinear phenomena is currently an active topic in the field of nonlinear dynamics. This article presents some types of bifurcation control methods with the aim of realizing vibration control and motion control for mechanical systems. It is also indicated through every control method that slowly varying components in the dynamics play important roles for the control and the utilizations of nonlinear phenomena. In the first part, we deal with stabilization control methods for nonlinear resonance which is the 1/3-order subharmonic resonance in a nonlinear spring-mass-damper system and the self-excited oscillation (hunting motion) in a railway vehicle wheelset. The second part deals with positive utilizations of nonlinear phenomena by the generation and the modification of bifurcation phenomena. We propose the amplitude control method of the cantilever probe of an atomic force microscope (AFM) by increasing the nonlinearity in the system. Also, the motion control of a two link underactuated manipulator with a free link and an active link is considered by actuating the bifurcations produced under high-frequency excitation. This article is a discussion on the bifurcation control methods presented by the author and co-researchers by focusing on the actuation of the slowly varying components included in the original dynamics.  相似文献   

18.
研究了基于光纤3×3耦合器迈克尔逊干涉仪及反馈跟踪相位变化的振动测量系统。该测量系统包含两个反馈控制环节:一个反馈控制环节用于补偿由于环境干扰引起的相位随机漂移;另一个反馈控制环节用于跟踪由于振动引起的相位变化,从而实现对振动幅值及振动方向的测量。该系统可对频率为1.5~200Hz的振动进行测量,测量分辨率可达到10nm。  相似文献   

19.
This paper presents a theoretical study of active vibration isolation on a two degree of freedom system. The system consists of two lumped masses connected by a coupling spring. Both masses are also attached to a firm reference base by a mounting spring. The lower mass is excited by a point force. A reactive control force actuator is used between the two masses in parallel with the coupling spring. Both masses are equipped with an absolute velocity sensor. The two sensors and the actuator are used to implement velocity feedback control loops to actively isolate the upper mass from the vibrations of the lower mass over a broad range of frequencies. The primary concern of the study is to determine what type of velocity feedback configuration is suitable with respect to the five parameters that characterise the system (the three spring stiffnesses and the two masses). It is shown analytically that if the ratio of the lower mounting spring stiffness to the lower mass is larger than the ratio of the upper mounting spring stiffness to the upper mass (supercritical system), feeding back the absolute upper mass velocity to the reactive force actuator results in an unconditionally stable feedback loop and the vibration isolation objective can be fully achieved without an overshot at higher frequencies. In contrast, if the ratio of the lower mounting spring stiffness to the lower mass is smaller than the ratio of the upper mounting spring stiffness to the upper mass (subcritical system), the upper mass velocity feedback is conditionally stable and the vibration isolation objective cannot be accomplished in a broad frequency band. For subcritical systems a blended velocity feedback is proposed to stabilise the loop and to improve the broad-band vibration isolation effect. A simple inequality is introduced to derive the combinations between the two error velocities that guarantee unconditionally stable feedback loops.  相似文献   

20.
Oscillatory dynamics are common in biological pathways, emerging from the coupling of positive and negative feedback loops. Due to the small numbers of molecules typically contained in cellular volumes, stochastic effects may play an important role in system behavior. Thus, for moderate noise strengths, stochasticity has been shown to enhance signal-to-noise ratios or even induce oscillations in a class of phenomena referred to as "stochastic resonance" and "coherence resonance," respectively. Furthermore, the biological oscillators are subject to influences from the division cycle of the cell. In this paper we consider a biologically relevant oscillator and investigate the effect of intrinsic noise as well as division cycle which encompasses the processes of growth, DNA duplication, and cell division. We first construct a minimal reaction network which can oscillate in the presence of large or negligible timescale separation. We then derive corresponding deterministic and stochastic models and compare their dynamical behaviors with respect to (i) the extent of the parameter space where each model can exhibit oscillatory behavior and (ii) the oscillation characteristics, namely, the amplitude and the period. We further incorporate division cycle effects on both models and investigate the effect of growth rate on system behavior. Our results show that in the presence but not in the absence of large timescale separation, coherence resonance effects result in extending the oscillatory region and lowering the period for the stochastic model. When the division cycle is taken into account, the oscillatory region of the deterministic model is shown to extend or shrink for moderate or high growth rates, respectively. Further, under the influence of the division cycle, the stochastic model can oscillate for parameter sets for which the deterministic model does not. The division cycle is also found to be able to resonate with the oscillator, thereby enhancing oscillation robustness. The results of this study can give valuable insight into the complex interplay between oscillatory intracellular dynamics and various noise sources, stemming from gene expression, cell growth, and division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号