首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 289 毫秒
1.
The delocalization transition in two-dimensional systems and a strong magnetic field is investigated with respect to its dependence on the Landau band indexj and on the type of disorder. The generation of random potentials according to a given correlation functionf and for a chosen correlation lengthd is described. The spectral properties of random eigenvalue sequences are examined as measures for the extension of wavefunctions and indicate a nonuniversal delocalization behaviour in higher Landau bands for short ranged correlated potentials. The critical exponents of the localization length of wavefunctions are determined for rapidly varying potentials in the second lowest Landau band (j=1) and depend on the correlation lengthd of the disorder. This different critical behaviour compared to that in the lowest band is confirmed by calculations for the density-density correlations of wavefunctions at the centers of the Landau levels. Calculations in different geometries also show that the critical systems of delocalized states are conformal invariant in the case of the nonuniversal delocalization transition (dl 0), whereas such local rescaling properties cannot be expected for slowly varying potentials.  相似文献   

2.
Z. Oztas 《Physics letters. A》2019,383(6):504-508
We numerically investigate the localization of Bose Einstein condensate (BEC) with spin orbit coupling in a two dimensional bichromatic optical lattice. We study localization in weakly interacting and non-interacting regimes. The existence of stationary localized states in the presence of spin–orbit and Rabi couplings has been confirmed. We find that spin orbit coupling favors localization, whereas Rabi coupling has a slight delocalization effect.  相似文献   

3.
Anderson localization predicts that wave spreading in disordered lattices can come to a complete halt, providing a universal mechanism for dynamical localization. In the one-dimensional Hermitian Anderson model with uncorrelated diagonal disorder, there is a one-to-one correspondence between dynamical localization and spectral localization, that is, the exponential localization of all the Hamiltonian eigenfunctions. This correspondence can be broken when dealing with disordered dissipative lattices. When the system exchanges particles with the surrounding environment and random fluctuations of the dissipation are introduced, spectral localization is observed but without dynamical localization. Previous studies consider lattices with mixed conservative (Hamiltonian) and dissipative dynamics and are restricted to a semiclassical analysis. However, Anderson localization in purely dissipative lattices, displaying an entirely Lindbladian dynamics, remains largely unexplored. Here the purely-dissipative Anderson model in the framework of a Lindblad master equation is considered, and it is shown that, akin to the semiclassical models with conservative hopping and random dissipation, one observes dynamical delocalization in spite of strong spectral localization of the Liouvillian superoperator. This result is very distinct from delocalization observed in the Anderson model with dephasing, where dynamical delocalization arises from the delocalization of the stationary state of the Liouvillian.  相似文献   

4.
S. Lakshmi  Swapan K. Pati 《Pramana》2005,65(4):593-599
We have investigated the effects of electron-phonon coupling on the current-voltage characteristics of a one-dimensional molecular wire with odd number of atoms. The wire has been modelled using the Su-Schreiffer-Heeger (SSH) Hamiltonian and the current-voltage characteristics have been obtained using the Landauer’s formalism. In the presence of strong electron-lattice coupling, we find that there are regions of negative differential resistance (NDR) at some critical bias, due to the degeneracy in the energies of the frontier molecular orbitals. The presence of the applied bias and the electron-lattice coupling results in the delocalization of these low-lying molecular states leading to the NDR behaviour.  相似文献   

5.
We propose a novel realization of Anderson localization in nonequilibrium states of ultracold atoms in an optical lattice. A Rabi pulse transfers part of the population to a different internal state with infinite effective mass. These frozen atoms create a quantum superposition of different disorder potentials, localizing the mobile atoms. For weakly interacting mobile atoms, Anderson localization is obtained. The localization length increases with increasing disorder and decreasing interaction strength, contrary to the expectation for equilibrium localization.  相似文献   

6.
The correlation energy of disordered systems has been calculated by means of second-order Rayleigh-Schrödinger perturbation theory in the M?ller-Plesset partitioning. Rings of hydrogen atoms have been chosen as model systems and the degree of disorder has been varied from complete delocalization to complete localization of the one-particle states. The correlation energy was found to have an extremum at an intermediate degree of disorder, corresponding to incomplete localization.  相似文献   

7.
《Nuclear Physics B》1999,554(3):607-626
We study delocalization transition in a one-dimensional electron system with quenched disorder by using supersymmetric (SUSY) methods. Especially we focus on effects of non-local correlation of disorder, for most of studies given so far considered δ-function type white noise disorder. We obtain wave function of the “lowest-energy” state which dominates partition function in the limit of large system size. Density of states is calculated in the scaling region. The result shows that delocalization transition is stable against non-local short-ranged correlation of disorder. Especially states near the band center are enhanced by the correlation of disorder which partially suppresses random fluctuation of disorder. Physical picture of the localization and the delocalization transition is discussed.  相似文献   

8.
We study effects of weak nonlinearity on localization of waves in disordered Stark ladder corresponding to propagation in presence of disorder and a static field. Our numerical results show that nonlinearity leads to delocalization with subdiffusive spreading along the ladder. The exponent of spreading remains close to its value in absence of the static field. The delocalization implies the existence of statistical entanglement between far away parts of the spreading wave packet indicating importance of long-range effects.  相似文献   

9.
We investigate theoretically the nature of the states and the localization properties in a one-dimensional Anderson model with long-range correlated disorder and weak nonlinearity. Using the stationary discrete nonlinear Schrödinger equation, we calculate the disorder-averaged logarithm of the transmittance and the localization length in the fixed input case in a numerically exact manner. Unlike in many previous studies, we strictly fix the intensity of the incident wave and calculate the localization length as a function of other parameters. We also calculate the wave functions in a given disorder configuration. In the linear case, flat phased localized states appear near the bottom of the band and staggered localized states appear near the top of the band, while a continuum of extended states appears near the band center. We find that the focusing Kerr-type nonlinearity enhances the Anderson localization of flat phased states and suppresses that of staggered states. We observe that there exists a perfect symmetry relationship for the localization length between focusing and defocusing nonlinearities. Above a critical value of the strength of nonlinearity, delocalization due to the long-range correlations of disorder is destroyed and all states become localized.  相似文献   

10.
11.
Using the four-terminal Landauer-Bu ttiker formula and Green's function approach, we calculate numerically the spin-Hall conductance in a two-dimensional junction system with the Rashba spin-orbit (SO) coupling and disorder. We find that the spin-Hall conductance can be much greater or smaller than the universal value e/8pi, depending on the magnitude of the SO coupling, the electron Fermi energy, and the disorder strength. The spin-Hall conductance does not vanish with increasing sample size for a wide range of disorder strength. Our numerical calculation reveals that a nonzero SO coupling can induce electron delocalization for disorder strength smaller than a critical value, and the nonvanishing spin-Hall effect appears mainly in the metallic regime.  相似文献   

12.
We investigate the effect of disorder in the laser intensity on the dynamics of dark-state polaritons in an array of 20 cavities, each containing an ensemble of four-level atoms that is described by a Bose-Hubbard Hamiltonian. We examine the evolution of the polariton number in the cavities starting from a state with either one or two polaritons in one of the cavities. For the case of a single polariton without disorder in the laser intensity, we calculate the wavefunction of the polariton and find that it disperses away from the initial cavity with time. The addition of disorder results in minimal suppression of the dispersal of the wavefunction. In the case of two polaritons with an on-site repulsion to hopping strength ratio of 20, we find that the polaritons form a repulsively bound state or dimer. Without disorder the dimer wavefunction disperses similarly to the single polariton wavefunction but over a longer time period. The addition of sufficiently strong disorder results in localization of the polariton dimer. The localization length is found to be described by a power law with exponent ? 1.31. We also find that we can localise the dimer at any given time by switching on the disorder.  相似文献   

13.
Every day, more evidence accumulates, leading to the conclusion that the stereoelectronic model through the nO → σ*C─O interaction is of minor relevance or even inoperative to explain conformational preference in the specific O─C─O segment. In the present study, dimethoxymethane (DMM) and some model spiroketals were chosen to develop a reliable and easy to apply methodology that is simple to interpret by experimental chemists. The general conformation observed in these molecules, present in many biologically active natural products, is the gauchegauche (g,g) in DMM and bis‐diaxial in spiroketals. To study this conformational preference, this paper presents a new approach, where general trends for the atomic and molecular energetic components, as well as localization and delocalization indices, and their bonded (Δb) and nonbonded (Δnb) electronic contributions are analyzed. In addition, group contributions to the electron localization and polarization are also defined, agreeing with the conformational preference. It is clear that electronic localization/delocalization is capable of reproducing experimental observations, showing an adequate correlation of this property to the cos θ term in the context of Pople's analysis. It is proposed that electron delocalization between electronegative atoms or total delocalization between nonbonded atoms is not the major contributors to the axial conformational preference observed in spiroketals. Conformational preference shows defined trends in terms of group delocalization in DMM and ring localization and charge transfer between groups in spiroketals. This way, electronic delocalization can be used to evaluate the anomeric effect, using just a few parameters, which makes the method broadly functional.  相似文献   

14.
The relationship between unpaired electron delocalization and nearest-neighbor atomic relaxations in the vacancies of diamond has been determined in order to understand the microscopic reason behind the neighboring atomic relaxation. The Density Functional Theory (DFT) cluster method is applied to calculate the single-electron wavefunction of the vacancy in different charge states. Depending on the charge and spin state of the vacancies, at outward relaxations, 84-90% of the unpaired electron densities are localized on the first neighboring atoms. The calculated spin localizations on the first neighboring atoms in the ground state of the negatively charged vacancy and in the spin quintet excited state of the neutral vacancy are in good agreement with Electron Paramagnetic Resonance (EPR) measurements. The calculated spin localization of the positively charged vacancy contrasts with the tentative assignment of the NIRIM-3 EPR signal to this center in (p-type) semiconductor diamond. The sign of the lattice relaxation in the diamond vacancy is explained based on the effect of electron delocalization on nearest-neighbor ion-ion screening, and also its effect on the bond length of neighboring atoms.  相似文献   

15.
The "delocalization" of inelastic scattering is an important issue for the ultimate spatial resolution of innershell spectroscopy in the electron microscope. It is demonstrated in a nonlocal model for electron energy loss spectroscopy (EELS) that delocalization of scanning transmission electron microscopy (STEM) images for single, isolated atoms is primarily determined by the width of the probe, even for light atoms. We present experimental data and theoretical simulations for Ti L-shell EELS in a [100] SrTiO3 crystal showing that, in this case, delocalization is not significantly increased by dynamical propagation. Issues relating to the use of aberration correctors in the STEM geometry are discussed.  相似文献   

16.
We study a quantum network extending in one dimension (chain of square loops connected at one vertex) made up of quantum wires with Rashba spin-orbit coupling. We show that the Rashba effect may give rise to an electron localization phenomenon similar to the one induced by magnetic field. This localization effect can be attributed to the spin precession due to the Rashba effect. We present results both for the spectral properties of the infinite chain and for linear transport through a finite-size chain connected to leads. Furthermore, we study the effect of disorder on the transport properties of this network.  相似文献   

17.
We numerically study a one-dimensional,nonlinear lattice model which in the linear limit is relevant to the study of bending(flexural)waves.In contrast with the classic one-dimensional mass-spring system,the linear dispersion relation of the considered model has different characteristics in the low frequency limit.By introducing disorder in the masses of the lattice particles,we investigate how different nonlinearities in the potential(cubic,quadratic,and their combination)lead to energy delocalization,equipartition,and chaotic dynamics.We excite the lattice using single site initial momentum excitations corresponding to a strongly localized linear mode and increase the initial energy of excitation.Beyond a certain energy threshold,when the cubic nonlinearity is present,the system is found to reach energy equipartition and total delocalization.On the other hand,when only the quartic nonlinearity is activated,the system remains localized and away from equipartition at least for the energies and evolution times considered here.However,for large enough energies for all types of nonlinearities we observe chaos.This chaotic behavior is combined with energy delocalization when cubic nonlinearities are present,while the appearance of only quadratic nonlinearity leads to energy localization.Our results reveal a rich dynamical behavior and show differences with the relevant Fermi–Pasta–Ulam–Tsingou model.Our findings pave the way for the study of models relevant to bending(flexural)waves in the presence of nonlinearity and disorder,anticipating different energy transport behaviors.  相似文献   

18.
We show that a discrete tight-binding model representing either a random or a quasiperiodic array of bonds can have the entire energy spectrum or a substantial part of it absolutely continuous, populated by extended eigenfunctions only, when atomic sites are coupled to the lattice locally, or non-locally from one side. The event can be fine-tuned by controlling only the host–adatom coupling in one case, while in two other cases cited here an additional external magnetic field is necessary. The delocalization of electronic states for the group of systems presented here is sensitive to a subtle correlation between the numerical values of the Hamiltonian parameters – a fact that is not common in the conventional cases of Anderson localization. Our results are analytically exact, and supported by numerical evaluation of the density of states and electronic transmission coefficient.  相似文献   

19.
20.
Recently it has been suggested that many-body localization (MBL) can occur in translation-invariant systems, and candidate 1D models have been proposed. We find that such models, in contrast to MBL systems with quenched disorder, typically exhibit much more severe finite-size effects due to the presence of two or more vastly different energy scales. In a finite system, this can artificially split the density of states (DOS) into bands separated by large gaps. We argue for such models to faithfully represent the thermodynamic limit behavior, the ratio of relevant coupling must exceed a certain system-size depedent cutoff, chosen such that various bands in the DOS overlap one another. Setting the parameters this way to minimize finite-size effects, we study several translation-invariant MBL candidate models using exact diagonalization. Based on diagnostics including entanglement and local observables, we observe thermal (ergodic), rather than MBL-like behavior. Our results suggest that MBL in translation-invariant systems with two or more very different energy scales is less robust than perturbative arguments suggest, possibly pointing to the importance of non-perturbative effects which induce delocalization in the thermodynamic limit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号