首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper introduces generalized diffusion models for the transport of particles in scattering media with nonscattering inclusions. Classical diffusion is known as a good approximation of transport only in scattering media. Based on asymptotic expansions and the coupling of transport and diffusion models, generalized diffusion equations with nonlocal interface conditions are proposed which offer a computationally cheap, yet accurate, alternative to solving the full phase-space transport equations. The paper shows which computational model should be used depending on the size and shape of the nonscattering inclusions in the simplified setting of two space dimensions. An important application is the treatment of clear layers in near-infrared (NIR) spectroscopy, an imaging technique based on the propagation of NIR photons in human tissues.  相似文献   

2.
A new grid adaptation strategy, which minimizes the truncation error of a pth-order finite difference approximation, is proposed. The main idea of the method is based on the observation that the global truncation error associated with discretization on nonuniform meshes can be minimized if the interior grid points are redistributed in an optimal sequence. The method does not explicitly require the truncation error estimate, and at the same time, it allows one to increase the design order of approximation globally by one, so that the same finite difference operator reveals superconvergence properties on the optimal grid. Another very important characteristic of the method is that if the differential operator and the metric coefficients are evaluated identically by some hybrid approximation, then the single optimal grid generator can be employed in the entire computational domain independently of points where the hybrid discretization switches from one approximation to another. Generalization of the present method to multiple dimensions is presented. Numerical calculations of several one-dimensional and one two-dimensional test examples demonstrate the performance of the method and corroborate the theoretical results.  相似文献   

3.
In this paper, we generalize the nonlocal discrete transparent boundary condition introduced by F. Schmidt and P. Deuflhard (1995, Comput. Math. Appl.29, 53–76) and by F. Schmidt and D. Yevick (1997, J. Comput. Phys.134, 96–107) to propagation methods based on arbitrary Padé approximations of the two-dimensional one-way Helmholtz equation. Our approach leads to a recursive formula for the coefficients appearing in the nonlocal condition, which then yields an unconditionally stable propagation method.  相似文献   

4.
A stray field (STRAFI) module has been added to the GAMMA magnetic resonance simulation platform in order to facilitate computational investigations of NMR experiments in large static field gradients that are on the order of 50 T/m. The package has been used to examine system response during echo trains generated by the application of shaped pulses. The associated echo amplitude maxima and effective slice thickness are presented. A new accurate method for STRAFI pulse calibration based on relative echo amplitudes is proposed.  相似文献   

5.
A new unconditionally stable algorithm for steady-state fluid simulation of high density plasma discharge is suggested. The physical origin of restriction on simulation time step is discussed and a new method to overcome it is explained. To compare the new method with previous other methods, a one-dimensional fluid simulation of inductively coupled plasma discharge is performed.  相似文献   

6.
We have implemented a scheme, SPECMON, for monitoring various parameters of a spectrometer, such as nitrogen pressure and sample temperature, and taking corrective action. The scheme is based on considerations of protection management which are of general application. Evaluation of the spectrometer state is incorporated in macros of the application software (VNMR) and is therefore very flexible. In contrast, corrective action is limited to the single one which is deemed fully safe: complete shutdown of the spectrometer and logging. Shutdown is implemented by a minor hardware modification of the spectrometer: the introduction of a second input to a relay already present for protection of the spectrometer power supply. Monitoring is handled by the host computer, and the shutdown command is transmitted via control lines of its series port, independent of the standard connection between the host computer and the NMR system console. The monitoring system (software and hardware) is unobtrusive in normal conditions, and it can be tested without affecting the operation of the spectrometer.  相似文献   

7.
Three-dimensional multiphase flow and flow with phase change are simulated using a simplified method of tracking and reconstructing the phase interface. The new level contour reconstruction technique presented here enables front tracking methods to naturally, automatically, and robustly model the merging and breakup of interfaces in three-dimensional flows. The method is designed so that the phase surface is treated as a collection of physically linked but not logically connected surface elements. Eliminating the need to bookkeep logical connections between neighboring surface elements greatly simplifies the Lagrangian tracking of interfaces, particularly for 3D flows exhibiting topology change. The motivation for this new method is the modeling of complex three-dimensional boiling flows where repeated merging and breakup are inherent features of the interface dynamics. Results of 3D film boiling simulations with multiple interacting bubbles are presented. The capabilities of the new interface reconstruction method are also tested in a variety of two-phase flows without phase change. Three-dimensional simulations of bubble merging and droplet collision, coalescence, and breakup demonstrate the new method's ability to easily handle topology change by film rupture or filamentary breakup. Validation tests are conducted for drop oscillation and bubble rise. The susceptibility of the numerical method to parasitic currents is also thoroughly assessed.  相似文献   

8.
We present new numerical methods for constructing approximate solutions to the Cauchy problem for Hamilton–Jacobi equations of the form ut+H(Dxu)=0. The methods are based on dimensional splitting and front tracking for solving the associated (non-strictly hyperbolic) system of conservation laws pt+DxH(p)=0, where p=Dxu. In particular, our methods depend heavily on a front tracking method for one-dimensional scalar conservation laws with discontinuous coefficients. The proposed methods are unconditionally stable in the sense that the time step is not limited by the space discretization and they can be viewed as “large-time-step” Godunov-type (or front tracking) methods. We present several numerical examples illustrating the main features of the proposed methods. We also compare our methods with several methods from the literature.  相似文献   

9.
The particle-based lattice solid model developed to study the physics of rocks and the nonlinear dynamics of earthquakes is refined by incorporating intrinsic friction between particles. The model provides a means for studying the causes of seismic wave attenuation, as well as frictional heat generation, fault zone evolution, and localisation phenomena. A modified velocity–Verlat scheme that allows friction to be precisely modelled is developed. This is a difficult computational problem given that a discontinuity must be accurately simulated by the numerical approach (i.e., the transition from static to dynamical frictional behaviour). This is achieved using a half time step integration scheme. At each half time step, a nonlinear system is solved to compute the static frictional forces and states of touching particle-pairs. Improved efficiency is achieved by adaptively adjusting the time step increment, depending on the particle velocities in the system. The total energy is calculated and verified to remain constant to a high precision during simulations. Numerical experiments show that the model can be applied to the study of earthquake dynamics, the stick–slip instability, heat generation, and fault zone evolution. Such experiments may lead to a conclusive resolution of the heat flow paradox and improved understanding of earthquake precursory phenomena and dynamics.  相似文献   

10.
Chemical kinetics conserves mass and renders nonnegative solutions; a good numerical simulation would ideally produce mass-balanced, positive concentration vectors. Many time-stepping methods are mass conservative; however, unconditional positivity restricts the order of a traditional method to one. The projection method presented in this paper ensures mass conservation and positivity. First, a numerical approximation is computed with one step of a mass-preserving traditional scheme. If there are negative components, the nearest vector in the reaction simplex is found by solving a quadratic optimization problem; this vector is shown to better approximate the true solution. A simpler version involves just one projection step and stabilizes the reaction simplex. This technique works best when the underlying time-stepping scheme favors positivity. Projected methods are more accurate than clipping and allow larger time steps for kinetic systems which are unstable outside the positive quadrant.  相似文献   

11.
High-resolution (0.001 cm−1) coherent anti-Stokes Raman scattering (CARS) was used to observe the Q-branch structure of the IR-inactive ν1 symmetric stretching mode of 32S16O3 and its various 18O isotopomers. The ν1 spectrum of 32S16O3 reveals two intense Q-branches in the region 1065–1067 cm−1, with surprisingly complex vibrational–rotational structure not resolved in earlier studies. Efforts to simulate this with a simple Fermi-resonance model involving ν1 and 2ν4 states do not reproduce the spectral detail, nor do they yield reasonable spectroscopic parameters. A more subtle combination of Fermi resonance and indirect Coriolis interactions with nearby states, 2ν4(1=0, ±2), ν24(1=±1), 2ν2(1=0), is suspected and a determination of the location of these coupled states by high-resolution infrared measurements is under way. At medium resolution (0.125 cm−1), the infrared spectra reveal Q-branch features from which approximate band origins are estimated for the ν2, ν3, and ν4 fundamental modes of 32S18O3, 32S18O216O, and 32S18O16O2. These and literature data for 32S16O3 are used to calculate force constants for SO3 and a comparison is made with similar values for SO2 and SO. The frequencies and force constants are in excellent agreement with those obtained by Martin in a recent ab initio calculation.  相似文献   

12.
A unified approach to approximating spatial derivatives in particle methods using integral operators is presented. The approach is an extension of particle strength exchange, originally developed for treating the Laplacian in advection–diffusion problems. Kernels of high order of accuracy are constructed that can be used to approximate derivatives of any degree. A new treatment for computing derivatives near the edge of particle coverage is introduced, using “one-sided” integrals that only look for information where it is available. The use of these integral approximations in wave propagation applications is considered and their error is analyzed in this context using Fourier methods. Finally, simple tests are performed to demonstrate the characteristics of the treatment, including an assessment of the effects of particle dispersion, and their results are discussed.  相似文献   

13.
Numerical simulation has become an indispensable tool for the interpretation of pulse EPR experiments. In this work it is shown how automatic orientation selection, grouping of operator factors, and direct selection and elimination of coherences can be used to improve the efficiency of time-domain simulations of one- and two-dimensional electron spin echo envelope modulation (ESEEM) spectra. The program allows for the computation of magnetic interactions of any symmetry and can be used to simulate spin systems with an arbitrary number of nuclei with any spin quantum number. Experimental restrictions due to finite microwave pulse lengths are addressed and the enhancement of forbidden coherences by microwave pulse matching is illustrated. A comparison of simulated and experimental HYSCORE (hyperfine sublevel correlation) spectra of ordered and disordered systems with varying complexity shows good qualitative agreement.  相似文献   

14.
Laser-polarized 129Xe and a high-Tcsuperconducting quantum interference device (SQUID) are used to obtain magnetic resonance images in porous materials at a magnetic field of 2.3 mT, corresponding to a Larmor frequency of 27 kHz. Image resolution of 1 mm is obtained with gradients of only 1 mT/m. The resolution of xenon chemical shifts in different physicochemical environments at ultralow fields is also demonstrated. Details of the circulating flow optical pumping apparatus and the SQUID spectrometer are presented.  相似文献   

15.
Amino acid type-selective experiments can help to remove ambiguities in automated assignment procedures for 15N/13C-labeled proteins. Here we present five triple-resonance experiments that yield amino acid type-selective 1H–15N correlations for aromatic amino acids. Four of the novel experiments are based on the MUSIC coherence transfer scheme that replaces the initial INEPT transfer and is selective for CH2. The MUSIC sequence is combined with selective excitation pulses to create experiments for Trp (W-HSQC) as well as Phe, Tyr, and His (FYH-HSQC). In addition, an experiment selective for Trp H1–N1 is presented. The new experiments are recorded as two-dimensional experiments and their performance is demonstrated with the application to a protein domain of 115 amino acids.  相似文献   

16.
A pulsed electron double resonance (PELDOR) setup working at S-band frequencies is introduced and its performance compared with an X-band setup. Furthermore, to verify experimentally that it is possible to disentangle the dipolar coupling nu(Dip) from the exchange coupling J by PELDOR we synthesized and investigated four bisnitroxide radicals. They exhibit in pairs the same distances r(AB) between the nitroxide moieties but only one of each pair possesses a non-zero J. The experimental values for r(AB) match the ones from molecular modeling very well for the molecules without exchange coupling. For one bisnitroxide it was possible to separate nu(Dip) from J and to ascertain the magnitude and sign of J to +11 MHz (antiferromagnetic spin-spin coupling).  相似文献   

17.
Ferro-refraction is the field magnification that is obtained when a current segment is near a high magnetic permeable boundary. It is shown that ferro-refraction may be used in the design of magnets for NMR or MRI to increase the efficiency of these magnets. The field may be modeled analytically with the Biot--Savart law and the inclusion of mirror image currents. Ferro-refraction is particularly useful in the design of monohedral magnets, magnets producing a remote homogeneous region which have the magnetic sources arranged to one side. These magnets have also been called planar magnets. Two designs for a monohedral magnet which produce good agreement between experimental and analytic results are presented.  相似文献   

18.
The design, construction, and performance of a multifrequency pulsed EPR and ENDOR probe for use at cryogenic temperatures are described. Interchangeable resonators based on a folded strip line design allow variation of the resonance frequency over a range of 5-11 GHz. Variable coupling to the resonator is achieved capacitively via a simple mechanical adjustment which is thermally and mechanically stable. The entire assembly is robust and easily fabricated. Common methods of analyzing the resonator parameters such as the Q-factor and coupling coefficient are discussed quantitatively. Probe performance data and multifrequency pulsed ENDOR spectra are presented.  相似文献   

19.
We present a new general-purpose advection scheme for unstructured meshes based on the use of a variation of the interface-tracking flux formulation recently put forward by O. Ubbink and R. I. Issa (J. Comput. Phys.153, 26 (1999)), in combination with an extended version of the flux-limited advection scheme of J. Thuburn (J. Comput. Phys.123, 74 (1996)), for continuous fields. Thus, along with a high-order mode for continuous fields, the new scheme presented here includes optional integrated interface-tracking modes for discontinuous fields. In all modes, the method is conservative, monotonic, and compatible. It is also highly shape preserving. The scheme works on unstructured meshes composed of any kind of connectivity element, including triangular and quadrilateral elements in two dimensions and tetrahedral and hexahedral elements in three dimensions. The scheme is finite-volume based and is applicable to control-volume finite-element and edge-based node-centered computations. An explicit–implicit extension to the continuous-field scheme is provided only to allow for computations in which the local Courant number exceeds unity. The transition from the explicit mode to the implicit mode is performed locally and in a continuous fashion, providing a smooth hybrid explicit–implicit calculation. Results for a variety of test problems utilizing the continuous and discontinuous advection schemes are presented.  相似文献   

20.
We propose a new model and a solution method for two-phase compressible flows. The model involves six equations obtained from conservation principles applied to each phase, completed by a seventh equation for the evolution of the volume fraction. This equation is necessary to close the overall system. The model is valid for fluid mixtures, as well as for pure fluids. The system of partial differential equations is hyperbolic. Hyperbolicity is obtained because each phase is considered to be compressible. Two difficulties arise for the solution: one of the equations is written in non-conservative form; non-conservative terms exist in the momentum and energy equations. We propose robust and accurate discretisation of these terms. The method solves the same system at each mesh point with the same algorithm. It allows the simulation of interface problems between pure fluids as well as multiphase mixtures. Several test cases where fluids have compressible behavior are shown as well as some other test problems where one of the phases is incompressible. The method provides reliable results, is able to compute strong shock waves, and deals with complex equations of state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号