首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
We derived typical phase diagrams for aqueous solutions of methyl cellulose (MC) of different molecular weights via micro‐differential scanning calorimetry, small‐angle X‐ray scattering, and visual inspection. The phase diagrams showed the cooccurrence of gelation and phase separation and qualitatively agreed with the theoretically calculated diagrams. The sol–gel transition line and phase separation line of a lower critical solution point type shifted toward lower temperatures and lower concentrations with an increase in the MC molecular weight. The sol–gel transition line intersected at a temperature higher than the critical point of the phase separation; therefore, both sol–gel phase separation and gel–gel phase separation were possible, depending on the temperature. Specifically, through visual inspection of a high molecular weight MC sample in the critical temperature region, we observed phase separation into two coexisting gels with different polymer concentrations. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 91–100, 2001  相似文献   

2.
We have examined solutions of a polystyrene–polybutadiene pentablock copolymer in 1,4‐dioxane, a slightly selective solvent for polystyrene and a θ solvent for polybutadiene, with static light scattering (SLS), dynamic light scattering (DLS), and small‐angle neutron scattering (SANS). The SANS data have been analyzed with the Percus–Yevick model to represent the scattering from interacting cores, approximated as hard spheres, and with a Lorentzian function to represent the scattering from unassociated and associated polymer chains. The SANS data at 25 °C clearly reveal interacting domains, approximately 6 nm in radius, formed by the association of the insoluble polybutadiene block in the 20% sample. The 4% sample does not show such domains, whereas the 7% sample represents an intermediate situation, with both unassociated polymer and associated polymer. At higher temperatures, the domains dissolve. The DLS data for samples with concentrations of 2–22% show two diffusive modes: a fast mode corresponding to the cooperative dynamics of concentration fluctuations and a slow mode corresponding to the diffusion of clusters. The large length‐scale heterogeneities, indicated by the strong angular dependence of SLS, implies that the small microdomains of about 10–15 polybutadiene blocks are bridged by the polystyrene chains, forming large aggregates with randomly distributed crosslinks on length scales much larger than the domain size. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2807–2816, 2002  相似文献   

3.
Dynamic and electrophoretic light scattering were used to study the diffusion and electrophoretic mobility of poly(dimethyldiallylammonium chloride) as a function of polymer molecular weight in salt-free solutions. Two relaxation modes characterized as fast diffusion (Df) and slow diffusion (Ds) were obtained from dynamic light scattering. Although the slow diffusion coefficient Ds strongly depends on molecular weight (Mw), the fast diffusion coefficient Df was found to be independent of Mw over the range in the study. The fast diffusion was considered as the diffusion of a part of the polymer chain; the slow diffusion was interpreted by multichain diffusion. Electrophoretic light scattering results in the salt-free solution show that the electrophoretic mobility of the polymer is independent of Mw. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
Cellulose was dissolved in 6 wt % NaOH/4 wt % urea aqueous solution, which was proven by a 13C NMR spectrum to be a direct solvent of cellulose rather than a derivative aqueous solution system. Dilute solution behavior of cellulose in a NaOH/urea aqueous solution system was examined by laser light scattering and viscometry. The Mark–Houwink equation for cellulose in 6 wt % NaOH/4 wt % urea aqueous solution at 25 °C was [η] = 2.45 × 10?2 weight‐average molecular weight (Mw)0.815 (mL g?1) in the Mw region from 3.2 × 104 to 12.9 × 104. The persistence length (q), molar mass per unit contour length (ML), and characteristic ratio (C) of cellulose in the dilute solution were 6.0 nm, 350 nm?1, and 20.9, respectively, which agreed with the Yamakawa–Fujii theory of the wormlike chain. The results indicated that the cellulose molecules exist as semiflexible chains in the aqueous solution and were more extended than in cadoxen. This work provided a novel, simple, and nonpollution solvent system that can be used to investigate the dilute solution properties and molecular weight of cellulose. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 347–353, 2004  相似文献   

5.
Structure formation by coupling between formation of crosslinking points and liquid–liquid phase separation was investigated for aqueous methyl cellulose solution by small‐angle X‐ray scattering (SAXS) and light scattering (LS) techniques. The sol–gel phase diagram and the SAXS results suggested that the liquid–liquid phase separation occurred before gelation. By LS measurements, the structure due to the liquid–liquid phase separation was directly observed. By applying speckle analysis on the LS profiles, it was suggested that the gelation and the phase separation strongly coupled each other: the increase in the apparent molecular weight by crosslinking induced the liquid–liquid phase separation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 168–174, 2010  相似文献   

6.
The structure and stereocomplex formation of multi-stereoblock poly(methyl methacrylates) in three different solvents, acetone, tetrahydrofuran (THF) and chloroform, corresponding to strongly-, weakly- and non-complexing solvent, respectively, were investigated by a combination of static and dynamic laser light scattering. Our results revealed that the stereocomplex was caused by weak interactions, and could be melted at higher temperatures. In THF, the intermolecular and intramolecular interactions could be clearly separated at lower temperatures, and the structure of aggregated chains was linear. In acetone, a more compact structure was obtained, which was corroborated by the fact that the stereocomplex had a higher melting temperature than in THF.  相似文献   

7.
本文用广角及准弹性光散射法测定了聚苯醚砜各级分在DMF中和在θ溶剂中25℃时的均才半径R_G,第二维利系数A_2,流体力学半经R_H,扩散系数D_O,扩散系数的浓度依赖性k_F以及这些参数与分子量M的关系。它们的结果如下R_G=0.031MO~(0.55) D_O(θ)=0.906×10~(-4)M~(0.5) D_0=1.445×10~(-4)M~(0.55)A_2=0.033M~(-0.35) k_D(θ)=0.5M~(0.34) k_D=2.3×10~(-6)M~(1.36)α_H=R_H/R_H(θ)=0.63M~(0.05)R_H(θ)=0.0299M~(0.5)R_H=0.0188M~(0.55) 作者讨论了静态与动态两种高分子尺寸之间的关系;三种溶胀因子α_η和、α_H、α_G之间的关系;以及摩擦系数的浓度系数k_F与流体力学体积V_H之间的关系。它们的结果满足下面各关系式: R_H/R_G=[π(v+1)(2v+1)/3]~(1/2)(2-v)(1-v)/2, α_η~3=α_(G)~2α_H, k_F=1.2A_2M+N_AV_H/M,K_F(θ)=N_AV_H/M  相似文献   

8.
The solution properties of cellulose derivatives are of interest from both technological and purely scientific aspects. At high concentrations these solutions form liquid crystalline structures. In dilute solution cellulosic chains can be described as semiflexible or wormlike with properties intermediate between random coils and rigid rods. A series of fractions of cellulose propionate have been examined by dilute solution viscometry, static and dynamic light scattering, and polarizing microscopy. Power law exponents are considerably larger than those observed for flexible chains and analysis of the intrinsic viscosity and hydrodynamic radii has yielded chain diameters and Kuhn statistical segment lengths. Corresponding aspect ratios from the hydrodynamic measurements are in good agreement with those obtained from polarizing microscopy, as analyzed in light of Flory's theory. Some aggregation and specific solvent effects have been observed, however separation of these effects has proven to be difficult. Results of these studies are compared to previous work for other cellulose derivatives. ©1995 John Wiley & Sons, Inc.  相似文献   

9.
1 Introduction Studies on the interaction of the complexes formed between proteins and amphiphilic molecules in aque- ous solutions have become a new focus and great pro- gress has been made in recent years[1―5]. An under- standing of these systems is of great importance in many biological processes and clinical use of drugs. The globular anionic protein human serum albumin (HSA) is widely used as a protein model in many studies[1―4,6]. Its principal function is to transport fatty acids an…  相似文献   

10.
对水+3-甲基吡啶+溴化钠三元电解质溶液的临界跨接行为的认识存在着争议. 部分研究认为由于三甲基吡啶的聚集, 体系存在从非经典的3D-Ising(三维伊辛)行为向经典的平均场行为的非单调跨接; 另一部分研究发现该体系符合3D-Ising临界行为, 并不存在跨接. 采用动-静态光散射研究了溴化钠, 3-甲基吡啶和水三元溶液的临界性质, 得到动态关联长度和静态关联长度, 发现动态关联长度和静态关联长度一致, 且在实验温度范围内(离临界温度0.01~25 K), 体系不违背3D-Ising行为, 也观测不到显著的临界跨接现象.  相似文献   

11.
By high-precision dynamic calorimetry the temperature dependences of heat capacity of dimethylene urethane (DMU) between 320 and 370 K and partially crystalline poly(dimethylene urethane) (PDMU) in the range 326-490 K at standard pressure have been determined within ±1.5%. The thermodynamic characteristics of fusion of the substances, namely the temperature interval of melting, temperature, enthalpy and entropy of fusion, as well as the characteristics of devitrification and glassy state for poly(dimethylene urethane) have been estimated. The first and the second cryoscopic constants have been calculated for dimethylene urethane. The experimental data obtained in the present work and literature findings on the heat capacity of the substances were used to calculate their thermodynamic functions: the heat capacity C°p (T), enthalpy H°(T)−H°(0), entropy S°(T) and Gibbs function G°(T)−H°(0) over the range from T→0 to (370-480) K. Based on the data, the thermodynamic characteristics of polymerization process with five-membered ring opening ΔpolH°, ΔpolS° and ΔpolG° of dimethylene urethane with the formation of linear partially crystalline poly(dimethylene urethane) have been evaluated.  相似文献   

12.
Metal complexes of polyacrylic acid containing Li, Li, and Cu, or Li and Zn have been studied in saline aqueous solutions using molecular hydrodynamics and light scattering methods. Intrinsic viscosities, weight-average molar masses, hydrodynamic radii, and radii of gyration were obtained. It was shown that the macromolecules of polymetalloacrylates containing divalent metals form small and large supramolecular structures, their dimensions, and composition being dependent on the ionic strength of the solution.  相似文献   

13.
In an attempt to prepare stable dispersions of cellulose nanocrystals in dipolar aprotic solvents, dilute aqueous suspensions of cellulose nanocrystals were prepared by sulfuric acid hydrolysis of cotton. The aqueous suspensions were freeze-dried, and then sonicated in the solvent of interest. Dispersions of 1 and 3% w/v concentration were prepared in polar organic solvents DMSO and DMF. The dispersions showed flow birefringence. The redispersion was incomplete, and there was some evidence for aggregation in the suspensions. A small amount of water appeared to be critical to suspension stability. Birefringent cellulose films were prepared from the dispersions by drying under vacuum and at ambient conditions.  相似文献   

14.
15.
Semidilute solution of cotton lint (CC1) in 8 wt % LiCl/N,N‐dimethylacetamide was investigated using static light scattering (SLS) and rheological measurements. The reduced osmotic modulus estimated by SLS measurements for CC1 solutions are proportional to c1.16 in the semidilute region. From the exponent of 1.16, de Gennes' scaling theory derives the relationship between radius of gyration, Rg, and molecular weight, Mw, of CC1 as RgM0.62 This corresponds to the Mark‐Houwink‐Sakurada exponent of 0.86. This exponent is very close to that estimated from scaling analysis of zero shear rate viscosity, that is 0.85. Apparent radius of gyration, Rg,app, estimated by SLS measurements for CC1 solutions are proportional to c?0.5 in the semidilute region. Rg,app indicates the mesh size of polymer entanglement in the semidilute region. On the assumption of the Gaussian behavior of CC1 molecule in the semidilute region, the exponent of ?0.5 gives the relationship between the molar mass between entanglements, Me, and c as following relationship: Mec?1. This agrees with the concentration dependence on plateau modulus estimated from the dynamic viscoelastic measurements. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2155–2160, 2006  相似文献   

16.
ABSTRACT

Dynamic light scattering (DLS) is a useful tool for the study of the solution-based behavior of colloids and molecular assemblies. The aim of this methods paper is to provide perspective on how this technique can be used by supramolecular chemists. As this technique is not extensively used within the field, we also provide a historical background of its development, summarize data interpretation and the strengths and limitations of the technique, and provide a perspective on some of the important features for supramolecular chemists that can be found in an instrument.  相似文献   

17.
Aromatic polyamide was synthesized via condensation polymerization of 4‐aminophenyl sulfone (APS) with isophthaloyl chloride (IPC) using N,N‐dimethyl acetamide (DMAc) as a solvent under anhydrous conditions. The purified aramid was studied by laser light scattering (LLS) in dimethyl sulfoxide (DMSO), a thermodynamically good solvent at 20°C. Static and dynamic light scattering studies permitted to determine the weight average molecular weight , radius of gyration , second virial coefficient A2, the hydrodynamic radius RH, and the diffusion coefficient D. Light scattering experiments were conducted at five concentrations ranging from 0.27 to 2.5 g/L. LLS measurement is also a very useful technique to study the aggregation or association in a polymer system as long as the large “clusters” are reasonably stable in time. The intensity autocorrelation function obtained on the quasi‐elastically scattered light showed a simple diffusive relaxation mode. The ratio of radius of gyration to the hydrodynamic radius, i.e. ~ 1.3 indicates that the polyamide chain has coil conformation in DMSO at 20°C. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Tailor‐made urethane acrylate anionomer (UAA) chains show higher viscosity and polyelectrolyte behavior in dimethyl sulfoxide (DMSO) than in water and toluene. Water is a nonsolvent for the hydrophobic soft segment but a good solvent for the hydrophilic hard segments, so hydrophobic segments are aggregated and form particles in the water phase, resulting in a smaller viscosity. Also, the fact that the viscosity of UAA chains is lowest in toluene can be interpreted as a result of ionic aggregation due to the nonpolarity of toluene. The structures of UAA networks dramatically change with the nature of the solvents used (i.e., the interaction between the UAA chains and the solvents used changes); this is confirmed by the results of tensile property, morphology, and wide‐angle X‐ray scattering data. Ionic aggregation formed in UAA/toluene (UATG networks) and hydrophobic aggregation formed in UAA/water (UAAG networks) are locked in by a chemical crosslinking reaction and result in a greater modulus and X‐ray scattering intensity. The greater elongation and swelling ratio in methylene chloride of UATG networks prepared in a UAA/toluene solution indicates that toluene is a better solvent than DMSO for the hydrophobic segments of UAA chains. Also, the greater swelling ratio in a pH 11 buffer solution and greater modulus of UAAG networks show that water is a better solvent than DMSO for hydrophilic ionic segments. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1903–1916, 2000  相似文献   

19.
Liquid crystalline solutions of cellulose in an ammonia/ammonium thiocyanate solvent will form thermoreversible gels at temperatures below 30°C. These gels are of interest both for processing the cellulose/ammonia/ammonium thiocyanate system and because they have an unusual structure, containing neither crystalline nor covalently bonded crosslinks. Although these gels contain neither crystalline nor covalently bonded crosslinks, the dynamic rheological behavior of the system at the gel point was found to be the same as for gels with covalent or crystalline crosslinks with a loss tangent, tan δ, independent of frequency. The kinetics of the gelation process was monitored via dynamic elastic modulus, G′. All samples revealed an exponential increase in G′ with time during gelation, very different from that observed in covalently bonded or crystalline crosslinked systems. Measurements of the loss tangent enabled precise determination of the gelation time for these systems as a function of cellulose concentration and temperature. We found the gel time to be inversely related to cellulose concentration and directly related to temperature. The strong dependence of gel time on these parameters offers a windows of spinnability that can be tailored for processing high modulus cellulose fibers. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
Intermolecular hydrogen bonds in the systems based on cellulose nitrate and a number of low-molecular solvents were studied by IR spectroscopy. The majority of the systems under study are characterized only by redistribution of intensities of the spectral bands corresponding to the pure polymer accompanied by their minor shift. In this case, acceptors of cellulose nitrate become sterically accessible for the redistribution of hydrogen bonds, and only an insignificant portion of them forms hydrogen bonds with a solvent. New spectral bands in the IR spectra were observed only for solutions containing diethyldiphenyl carbamide, suggesting the formation of a molecular complex. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 484–487, March, 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号