首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we investigate the final morphology of photocured polyurethane acrylates based on polypropylene oxide by means of Transmission Electron Microscopy (TEM), Small Angle X‐ray Scattering (SAXS), and dynamic mechanical measurements. Two interrelated structural features on two different size scales can occur in these systems. TEM analysis demonstrates the presence of inhomogeneities on the length scale of 10–200 manometers, mostly constituted by clusters of small hard units (diacrylated diisocyanate) connected by polyacrylate chains. The bimodal shape of the dynamic mechanical relaxation spectra corroborates this two‐phase structure. Besides, a suborganization of the reacted diisocyanate hard segments inside the polyurethane acrylate matrix is revealed by SAXS measurements, depending on the nature of the hydroxylacrylate used for the synthesis of the precursor. Finally, UV‐exposure time is found to induce modifications on the viscoelastic properties of the final network, even at high double‐bond conversion: this effect can be due to a postreaction and to an increase of the crosslinking density inside the hard segments domains. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 919–937, 1999  相似文献   

2.
The ability of actin to form filaments is fundamental to its biological function and often characterised by various methods in vitro. One of the most frequently used methods capitalises on the observation that the fluorescence emission of a pyrene label on the Cys-374 residue of actin is enhanced by a factor of ∼20 during polymerisation. This method inherently involves the chemical modification of actin monomers with pyrene. It was reported earlier that the pyrene labelling of actin monomers has only small effect on the polymerisation and depolymerisation rates of actin, indicating that the method is suitable to characterise the effect of actin-binding proteins or peptides on the polymerisation kinetics.In our present work we tested the effect of the pyrene labelling on the thermal denaturation of actin filaments by using the method of differential scanning calorimetry (DSC). By recording the heat denaturation profiles of unlabelled and pyrene labelled actin filaments we observed that pyrene labelling shifted the melting point (Tm) of actin filaments from 66 to 68 °C. A similar effect was detected in the presence of equimolar concentration of phalloidin where the Tm shifted from 79 to 82 °C. We concluded that the observed pyrene labelling induced differences of the thermal denaturation of actin filaments were small. The DSC results, therefore, confirmed that the methods based on the measurements of pyrene intensity during actin polymerisation are suitable to characterise the polymerisation kinetics of actin under in vitro conditions.  相似文献   

3.
Actin gels formed by polymerizing monomeric actin have been studied by use of small amplitude oscillatory deformations and steady shear flow. The length of actin filaments within the gel was varied by copolymerization in the presence of the filament-capping protein gelsolin. The results for short filaments are in qualitative agreement with a model for semi-dilute solutions of inter-penetrating rods. Long filaments give rise to additional motions, believed to be flexing of rods. Steady shear viscosities, at high shear rates, are independent of initial filament length. Results are explained as due to breaking of filaments in shear flows.  相似文献   

4.
The apparent short time cutoff of the relaxation‐time spectrum at surprisingly long times for polymers in solution is a well known but not yet understood observation. To elucidate its origins we revisit viscoelastic and oscillatory flow birefringence data for solutions and melts of two linear polymers (polystyrene and polyisoprene) and present new measurements of oscillatory flow birefringence of the latter. Previous measurements have suggested that the “flexibility” of both polymers in solution is smaller than in the melt on the basis of the breadth of the relaxation‐time spectrum of the solution as compared with that of the melt. Our new measurements have explored a higher effective frequency range than was previously possible. This has allowed us to observe the effect of the rotational relaxation time of the solvent on the dynamics of the solution at high frequencies. To obtain the polymer global motion contribution, one now needs to subtract from the solution properties a frequency‐dependent complex solvating environment contribution. We show that the decrease in apparent “flexibility” for solutions arises from the presence of a solvent that exhibits a rotational relaxation time and thus simple viscoelastic behavior somewhat near the frequency window of the experiment. Although recent predictions of a model for a chain in a solvent with a single relaxation time are in qualitative agreement with our results, our data suggest that the solution results may reflect the influence of solvent on the development of the “entropic spring” forces at short times. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2860–2873, 2001  相似文献   

5.
The viscoelastic properties of decrosslinked irradiation‐crosslinked polyethylenes using a supercritical methanol were investigated via oscillatory dynamic shear measurements. Decrosslinked polymers at a low reaction temperature exhibited solid‐like rheological properties, as evidenced by a small slope at G′ and G″, a long relaxation time, slow stress relaxation behavior, and considerable yield stress. In contrast, decrosslinked polymers at a high temperature exhibited liquid‐like rheological properties that included a large slope in G′ and G″, a short relaxation time, fast stress relaxation behavior, and nonyield stress. The difference in the viscoelastic properties of the decrosslinked polyethylenes was attributed to the difference in the gel content with the reaction temperature. A higher gel content induced stronger solid‐like viscoelastic properties. Hence, the rheological measurements were useful for analyzing the molecular structure of decrosslinked polymers using a supercritical fluid. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1265–1270, 2010  相似文献   

6.
A custom designed vertical oscillation rheometer (VOR) is used for the rheological measurements of electrorheological (ER) fluids consisting of 15 and 20 vol.% semiconducting polyaniline particles suspended in silicone oil. The viscoelastic material functions, including complex viscosity and complex shear modulus, are measured via geometric parameters, measured force, and applied strain of the VOR. Viscoelastic properties of the ER fluids are also measured as a function of applied electric field strength and particle concentration. The VOR, equipped with a high voltage generator, can easily be constructed and used to measure ER properties. It is further found that polyaniline suspensions behave as viscoelastic materials in an electric field. In linear viscoelastic conditions, elasticity was promoted with the increment of electric field due to particle chain structure in the presence of the applied electric field. It is also found that the applied electric field rather than particle concentration enhanced the elasticity of ER fluids.  相似文献   

7.
Large enhancements of the melt strength of polypropylene (PP) were achieved by the introduction of high molecular weight polyethylene (PE) into PP. The viscoelastic properties of the high‐melt‐strength PP melts under shear flow were investigated. It was found that the rheological properties of the high‐melt‐strength PP were distinctly different from those of conventional PP. The elastic response at low frequencies was significantly enhanced in comparison with the conventional PP, implying a presence of a long relaxation time mode that was not revealed in conventional PP. In step‐shear measurements, the fast and slow relaxation processes that characterized the linear viscoelastic properties were observed also for nonlinear relaxation moduli. The dependence of the damping for the slow process of the high‐melt‐strength PP on shear strain was much weaker than that of the fast process. These rheological behaviors characterizing the long relaxation time mode were further enhanced with the increasing concentration of high molecular mass PE. The unusual shear rheological behaviors were discussed in view of the role of high molecular weight PE as a long relaxation time mode within PP. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2692–2704, 2001  相似文献   

8.
The Brownian motion of probe particles in aqueous solutions of poly(vinyl alcohol)(PVA) and in chemically crosslinked PVA gels has been studied by diffusing-wave spectroscopy (DWS). At long time scales the measurements allow us to determine the effect of the crosslinking ratio on the macroscopic viscosity of sols and the shear modulus of gels. The local shear modulus of gels as obtained from the characteristic length of the Brownian cage was found to agree with that measured by classical rheometry and dynamic light scattering (DLS). These microrheological techniques were applied to two polymer gel systems. Substrate induced gradient structure of hydrogels was studied from a microrheological point of view using DLS. It is clearly seen that hydrophobic substrate induces weakly crosslinked network formation at the interface region up to a few millimeters as expected from other experimental facts. Magnetic particle motion in gels under external magnetic field was investigated by DWS. The translational motion of the magnetic particles in gels due to the alternating magnetic force can be detected and found to be superimposed on the relaxation due to the thermal motion.  相似文献   

9.
The present work reports a discrete, stress-dependent dynamic compliance spectra method which may be used to predict the mechanical response of nonlinear viscoelastic polymers during strain-defined processes. The method is based on the observation that the real and complex parts of the discrete dynamic compliance frequency components obtained from creep measurements are smooth, easily fit functions of stress. Comparisons between experimental measurements and model calculations show that the model exhibits excellent quantitative agreement with the basis creep measurements at all experimental stress levels. The model exhibits good quantitative agreement with stress relaxation measurements at moderate levels of applied strain. However, the model underestimates the experimental stress relaxation at an applied strain of 3.26%. The stress relaxation error appears to be a real material effect resulting from the different strain character of creep and stress relaxation tests. The model provides a good quantitative agreement with experimental constant strain rate measurements up to approximately 4% strain, after which the model underestimates the experimental flow stress. This effect is explained by the time dependence of the stress-activated configurational changes necessary for large strains in glassy polymers. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2301–2309, 1998  相似文献   

10.
Radiopaque microspheres of sizes ranging from 0.2 to 1.4 μm were formed by the dispersion polymerization of the monomer 2‐methacryloyloxyethyl(2,3,5‐triiodobenzoate) in 2‐methoxyethanol. The effects of various polymerization parameters, including the monomer concentration, initiator type and concentration, and stabilizer molecular weight and concentration, on the molecular weight, size, and size distribution of the particles were elucidated. The characterization of these iodinated microspheres was accomplished with routine methods such as Fourier transform infrared, nuclear magnetic resonance, thermogravimetric analysis, differential scanning calorimetry, gel permeation chromatography, scanning electron microscopy, Brunauer–Emmett–Teller measurements, and elemental analysis. Because of the presence of iodine atoms in these microspheres, they were expected to possess a radiopaque nature. The radiopacity of these particles dispersed in water and in the dry state was demonstrated with an imaging technique based on X‐ray absorption usually used in hospitals. These novel radiopaque microspheres may be used for different X‐ray imaging needs, such as blood pooling, body organs, embolization, dental compositions, implants, prostheses, and nanocomposites. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3859–3868, 2006  相似文献   

11.
A theoretical analysis is performed for the study of the bonding of a viscoelastic rough surface to a rigid substrate. The mechanics of contact and adhesion are studied with the Dugdale–Barenblatt model for surface interaction. Exact solutions are obtained for arbitrary surface profiles and loading histories. Detailed solutions are given for a power‐law viscoelastic material. This solution is used to determine the time for the self‐bonding of surfaces (solid sintering under zero load). The time to self‐bonding is shown to be extremely sensitive to the aspect ratio of the asperities. A closed form expression is derived for the time needed to achieve full contact when the surfaces are compressed with a load that increases linearly with time. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 545–561, 2002; DOI 10.1002/polb.10113  相似文献   

12.
The relationships between the structure and the viscoelastic properties of freeze/thaw PVA hydrogels obtained by repeatedly freezing and thawing dilute solutions of PVA in D2O(11% w/w PVA) in as-prepared and rehydrated states are investigated. Our results indicate that the PVA chains and solvent molecules are organized at different hierarchical length scales, which include the presence of micro- and macro-pores, into a network scaffolding. The porous network is ensured by the presence of crystallites, which act as knots interconnected by portions of PVA chains swollen by the solvent. X-ray diffraction and SANS techniques are used to obtain structural information at short (angstroms) and medium (nanometers) ranges of length scales, concerning the crystallinity, the size of small crystalline aggregates and the average distance between crystallites in PVA hydrogels. Indirect information concerning the structural organization on the large length scales (microns) are provided by viscoelastic measurements. The dynamic shear elastic moduli at low frequency and low strain amplitude, G′, are determined and related to the degree of crystallinity. These data indicate that a minimum crystallinity of 1% is required for these PVA samples to exhibit gel behaviour and have allowed obtaining the order of magnitude of the average mesh size in these gels. Finally, it is shown that the negative effect of aging, inducing worse physical and mechanical properties in these systems, may be prevented using a drying/re-hydration protocol able to keep the physical properties of the as-prepared PVA hydrogels.  相似文献   

13.
Experimental study is performed to understand and quantify the wall and eccentric retardation effects on spheres settling in shear thinning and shear-thinning viscoelastic fluids over a wide range of diameter ratios (0.02 < λ < 0.9). The four-parameter Carreau viscosity equation has been chosen to represent the apparent viscosity-shear rate of polyacrylamide solutions. Two new wall factor corrections are presented with excellent agreement compared to experimental data.

The terminal settling velocity of a sphere in bounded fluid is significantly reduced by the presence of confining boundaries, named wall retardation effect that decreases due to the shear-thinning behavior of power law fluids, which is weaken further by the elastic effect of viscoelastic fluids. The wall factors of spheres settling in viscoelastic fluids increase at low ξ up to 50, followed by a horizontal confidence region (0.7 ≤ f ≤ 1) at high ξ. In this region, the wall factor is mainly dominated by fluids’ elasticity, which is more distinguished for small spheres. As the settling spheres approach to the wall (b/R → 1), the neighboring wall exert more intensive retardation that reduce the terminal settling velocity greatly when b/R > 0.6 in pure shear-thinning fluids, and the extra retardation effect of nearby wall increases at high concentration due to the enhanced non-Newtonian property. In contrast, the eccentric effect on settling velocity in viscoelastic fluids is cut down greatly by the fluid's elasticity, which is negligible.  相似文献   

14.
A new latrunculin, oxalatrunculin B (3), was isolated from Red Sea sponge Negombata corticata. Extensive spectroscopic analysis revealed an unprecedented heterocycle in which the rare thiazolidinone ring found in latrunculins was oxidized with three additional oxygens. An actin polymerization inhibition assay agreed with MM-PBSA free energy calculations that 3 binds more weakly than latrunculin B to actin. Significant antifungal and anticancer activity of 3 was found, suggesting an alternate target in addition to actin for latrunculin bioactivity.  相似文献   

15.
In this article, we report on the viscoelastic and thermal properties of agarose–polyacrylamide (PAAm) interpenetrating polymer hydrogels (IPHs) and semi‐IPHs as a function of agarose concentration and PAAm crosslinking degree. The results demonstrated that the agarose is able to gel in the presence of crosslinked and linear IPHs. In addition, the reticulation of PAAm in the presence of agarose is confirmed for the case of IPHs giving rise to systems with dimensional stability at high temperatures. The formation of a fully IPH was ascertained at low agarose concentrations. A study of the morphology and nanoscale elasticity of the different systems has been carried out with atomic force microscopy/ultrasonic force microscopy (UFM). UFM data provide further evidence of interpenetration, allowing us to visualize—if present—phase‐separated domains with nanoscale resolution for the various crosslinking degrees and PAAm and agarose concentrations used during the formation of the IPHs. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

16.
Monomeric actin (G-actin) polymerizes spontaneously into helical filaments in the presence of inorganic salts. The slowest, rate-limiting step of the polymerization process is formation of actin trimers, the smallest oligomers that serve as nuclei for fast filament growth (filament elongation) by monomer addition at the filament ends. In low ionic-strength solutions, actin can be polymerized by myosin subfragment-1 (S1). In early works it has been suggested that G-actin-S1 1:1 complexes (GS) assemble into filaments according to the nucleation-filament elongation scheme. Subsequent studies indicated that one S1 molecule can bind two actin monomers, and that oligomerization of the initial complexes is a fast reaction. This has led to suggest an alternative mechanism, with a ternary G(2)S complex and its oligomers being predominant intermediates of S1-induced assembly of G-actin into filaments. We used dynamic light scattering to analyze the initial steps of S1-induced polymerization of actin. Our results suggest formation of GS complexes and their oligomers in the presence of S1 equimolar to or in excess over actin. We confirm formation of G(2)S complexes as intermediates of S1-induced polymerization in the presence of actin in excess over S1.  相似文献   

17.
We suggest a universal plot that superposes linear viscoelastic data of nearly monodisperse polymers on a single curve, regardless of the molecular weight, temperature, and species of polymers. The plotting method is based on the time–temperature superposition and rescaling of viscoelastic functions with terminal behavior. Without any information from molecular theories, the plot supports the fact that the molecular theories of the linear viscoelasticity of monodisperse polymers are independent of the species of polymers. Although an appropriate scaling may show universality by separately extracting the reptational mode and the Rouse mode from the whole set of viscoelastic data, our plotting method shows universality in a unified manner that scales the viscoelastic functions measured over the whole frequency range. We explain the origin of the universality of the plot in terms of molecular theory, the phenomenological spectra of the relaxation time (the BSW and CW spectra), and the principle of time–temperature superposition. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2730–2737, 2004  相似文献   

18.
The phase‐separation behavior of poly(methyl methacrylate)/poly(α‐methyl styrene‐co‐acrylonitrile) (PMMA/α‐MSAN) blends upon heating was studied through dynamic rheological measurements and time‐resolved small angle light scattering, as a function of temperatures and heating rates. The spinodal temperatures could be obtained by an examination of the anomalous critical viscoelastic properties in the vicinity of phase‐separation induced by the enhanced concentration fluctuation on the basis of the mean field theory. It is found that the dependence of the critical temperatures determined by dynamic rheological measurements and small angle light scattering on heating rates both deviates obviously from the linearity, even at the very low heating rates. Furthermore, the cloud‐point curves decrease gradually with the decrease of heating rates and present the trend of approaching Tgs of the blends. The nonlinear dependence is in consistence with that extracted from the isothermal phase‐separation behavior as reported in our previous paper. It is suggested that the equilibrium phase‐separation temperature could be hardly established by the linear extrapolating to zero in the plotting of cloud points versus heating rates. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1547–1555, 2006  相似文献   

19.
Poly(L-lactic acid) filaments were prepared by high speed melt spinning at take-up velocities up to 5000 m/min. The crystallinity, birefringence, tensile strength, Young's modulus and yield strength all exhibit maxima at take-up velocities between 2000 and 3000 m/min. The boiling water shrinkage exhibits a minimum in this range. The maximum tensile strength of the as-spun filaments was 385 MPa and the maximum modulus was 6 GPa. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1005–1012, 1998  相似文献   

20.
We investigate the dependence of F-actin microrheology on probe surface chemistry using diffusing wave spectroscopy. Polystyrene probe particles exhibit subdiffusive mean-squared displacements, where Deltar(2)(t) approximately t(0.77)(+/-)(0.03) consistent with previous experiments and theory. However, polystyrene probes preadsorbed with bovine serum albumin (BSA) interact weakly with the surrounding polymer network and exhibit a scaling exponent similar to pure diffusion Deltar(2)(t) approximately t, which decreases as particle size and actin concentration increases. Using models of particle diffusion in locally heterogeneous viscoelastic microenvironments, we find that the microrheological response of BSA-treated particles is consistent with the formation of a polymer-depleted shell surrounding the probes. The shell thickness scales with particle size but not polymer concentration. These results suggest that the depletion is caused by exclusion or orientation of actin filaments near probes due to their long length and rigidity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号