首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The samples of the NiO/B2O3-Al2O3 system with NiO contents from 0.48 to 38.30 wt % were synthesized by the impregnation of borate-containing alumina (20 wt % B2O3). It was found that nickel oxide occurred in an X-ray amorphous state in the samples containing to 23.20 wt % NiO. At a NiO content of 4.86 wt % or higher, the support was blocked by the modifier to cause a decrease in the specific surface area from 234 to 176 m2/g and in the amount of acid sites from 409–424 to 333 μmol/g. An extremal character of the dependence of catalyst activity in ethylene oligomerization on NiO content was found with a maximum in the range of 4.86–9.31 wt %. Based on spectroscopic data, it was found that ethylene activation on the NiO/B2O3-Al2O3 catalyst can be associated with the presence of Ni2+ cations, which chemically interact with the support. The catalyst containing 4.86 wt % NiO at 200°C, a pressure of 4 MPa, and an ethylene supply rate of 1.1 h−1 provided almost complete ethylene conversion at the yield of liquid oligomerization products to 90.0 wt %; the total concentration of C8+ alkenes in these products was 89.0 wt %.  相似文献   

2.
The Ni/ZrO2/SiO2 aerogels catalysts were synthesized via three different routes: (i) impregnation ZrO2–SiO2 composite aerogels with a aqueous solution of Ni(NO3)2, (ii) impregnation SiO2 aerogels with a mixed aqueous solution of Ni(NO3)2 and ZrO(NO3)2 · 2H2O, (iii) one-pot sol–gel procedure from precursors Ni(NO3)2/ZrO(NO3)2 · 2H2O/Si(OC2H5)4. These catalysts were characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR), ammonia temperature-programmed desorption (NH3-TPD), N2 adsorption–desorption isotherms and Fourier transform infrared (FT-IR). The Liquid-phase hydrogenation of maleic anhydride (MA) was performed over these catalysts. The results revealed that the different preparation routes result in a difference between the obtained samples, concerning the crystal structure and composition, surface acidity, mixed level of each component, texture, and catalytic selectivity.  相似文献   

3.
The comparative study of the role of binary oxide support on catalyst physico-chemical properties and performance in methanol synthesis were undertaken and the spinel like type structures (ZnAl2O4, FeAlO3, CrAl3O6) were prepared and used as the supports for 5% metal (Cu, Ag, Au, Ru) dispersed catalysts. The monometallic 5% Cu/support and bimetallic 1% Au (or 1% Ru)-5% Cu/support (Al2O3, ZnAl2O4, FeAlO3, CrAl3O6) catalysts were investigated by BET, XRD and TPR methods. Activity tests in methanol synthesis of CO and CO2 mixture hydrogenation were carried out. The order of Cu/support catalysts activity in methanol synthesis: CrAl3O{ia6} > FeAlO3 > ZnAl2O4 is conditioned by their reducibility in hydrogen at low temperature. Gold appeared more efficient than ruthenium in promotion of Cu/support catalysts. Published in Russian in Kinetika i Kataliz, 2009, Vol. 50, No. 2, pp. 242–248. The article is published in the original.  相似文献   

4.
Highly monodispersed ruthenium nanoparticles were prepared via wet impregnation technique using RuCl3 · nH2O as a precursor. Ru nanoparticles were supported on Al2O3 to synthesize Ru nanocatalyst. The nanocatalyst was characterized by various techniques like XRD, SEM, TEM and BET analysis. The catalyst was used for hydrogenation of phenol under mild condition. The activity of the catalyst was checked by varying different parameters such as reaction temperature, time, H2 partial pressure, metal loading and catalyst amount. The catalyst was recovered from product and reused up to four times without significant loss in its catalytic activity. After a reaction time of 1 h, Ru/Al2O3 nanocatalyst showed high reactivity (82% conversion) and selectivity to cyclohexanone (67%) at 80°C and 20 bar hydrogen pressure.  相似文献   

5.
Carbon dioxide reforming (CDR) of methane to synthesis gas over supported nickel catalysts has been reviewed. The present review mainly focuses on the advantage of ceria based nickel catalysts for the CDR of methane. Nickel catalysts supported on ceria–zirconia showed the highest activity for CDR than nickel supported on other oxides such as zirconia, ceria and alumina. The addition of zirconia to ceria enhances the catalytic activity as well as the catalyst stability. The catalytic performance also depends on the crystal structure of Ni–Ce–ZrO2. For example, nickel catalysts co-precipitated with Ce0.8Zr0.2O2 having cubic phase gave synthesis gas with CH4 conversion more than 97% at 800 °C and the activity was maintained for 100 h during the reaction. On the contrary, Ni–Ce–ZrO2 having tetragonal phase (Ce0.8Zr0.2O2) or mixed oxide phase (Ce0.5Zr0.5O2) deactivated during the reaction due to carbon formation. The enhanced catalytic performance of co-precipitated catalyst is attributed to a combination effect of nano-crystalline nature of cubic Ce0.8Zr0.2O2 support and the finely dispersed nano size NiO x crystallites, resulting in the intimate contact between Ni and Ce0.8Zr0.2O2 particles. The Ni/Ce–ZrO2/θ–Al2O3 also exhibited high catalytic activity during CDR with a synthesis gas conversion more than 97% at 800 °C without significant deactivation for more than 40 h. The high stability of the catalyst is mainly ascribed to the beneficial pre-coating of Ce–ZrO2 resulting in the existence of stable NiO x species, a strong interaction between Ni and the support, and an abundance of mobile oxygen species in itself. TPR results further confirmed that NiO x formation was more favorable than NiO or NiAl2O4 formation and further results suggested the existence of strong metal-support interaction (SMSI) between Ni and the support. Some of the important factors to optimize the CDR of methane such as reaction temperature, space velocity, feed CO2/CH4 ratio and H2O and/or O2 addition were also examined.  相似文献   

6.
Gold catalysts with loadings ranging from 0.5 to 7.0 wt% on a ZnO/Al2O3 support were prepared by the deposition–precipitation method (Au/ZnO/Al2O3) with ammonium bicarbonate as the precipitation agent and were evaluated for performance in CO oxidation. These catalysts were characterized by inductively coupled plasma-atom emission spectrometry, temperature programmed reduction, and scanning transmission electron microscopy. The catalytic activity for CO oxidation was measured using a flow reactor under atmospheric pressure. Catalytic activity was found to be strongly dependent on the reduction property of oxygen adsorbed on the gold surface, which related to gold particle size. Higher catalytic activity was found when the gold particles had an average diameter of 3–5 nm; in this range, gold catalysts were more active than the Pt/ZnO/Al2O3 catalyst in CO oxidation. Au/ZnO/Al2O3 catalyst with small amount of ZnO is more active than Au/Al2O3 catalyst due to higher dispersion of gold particles.  相似文献   

7.
It has been established that oxides of the rare-earth elements with moderate redox potentials (La2O3, CeO2) increased the activity and working stability of Ni-Al2O3/cordierite catalysts in the reactions of deep and partial oxidation of methane. In the presence of the (NiO + La2O3 + Al2O3)/cordierite catalyst the process of carbon dioxide conversion of methane can be intensified by introduction of oxygen into the reaction gas mixture which decreases the temperature to achieve high conversion to 75–100 °C and has practically no effect on selectivity with respect to H2. Translated from Teoreticheskaya i éksperimental'naya Khimiya, Vol. 44, No. 6, pp. 359–364, November–December, 2008.  相似文献   

8.
It is shown that palladium–cobalt oxide–cerium catalyst deposited on cordierite catalyzes the reduction of nitrogen(II) oxide with carbon monoxide, and cobalt–iron catalysts in simultaneous reduction of NO + N2O with C3-C4 alkanes retained high activity in the presence of water vapor and sulfur dioxide. The Pd-Co3O4/cordierite catalyst exceeds the Pt-Co3O4/codierite catalyst in the conversion of NO and CO in the reaction mixture CO + NO + O2 + H2O + SO2. Modification of the Pd-Co3O4/cordierite with cerium oxide considerably increases its sulfur resistance.  相似文献   

9.
Abstract  Formal [2 + 2 + 2] addition reaction of [Cp*Ru(H2O)(NBD)][BF4] (NBD = norbornadiene) with 4,4′-Diethynylbiphenyl generates [C9H96-C6H4(RuCp*)–C6H4(RuCp*)-η6-C9H9][BF4]2. The reaction of [Cp*Ru(H2O)(NBD)][BF4] with 1,4-diphenylbutadiyne generates the unusual [2 + 2 + 2] additional organic compound Ph–C≡C–C9H8–Ph in addition to the organometallic compound [Cp*Ru(η6-C6H5–C≡C–C≡C–Ph)][BF4]. [C9H96-C6H4(RuCp*)–C6H4(RuCp*)-η6-C9H9][BPh4]2 is generated after the reaction of compound [C9H96-C6H4(RuCp*)–C6H4(RuCp*)-η6-C9H9][BF4]2 with Na[BPh4]. The structure of this compound was confirmed by X-ray diffraction. A possible approach to form Ph–C≡C–C9H8–Ph and [Cp*Ru(η6-C6H5–C≡C–C≡C–Ph)][BF4] is suggested. Graphical Abstract  Formal [2 + 2 + 2] addition reaction of [Cp*Ru(H2O)(NBD)]BF4 (NBD = norbornadiene) with 4,4′-Diethynylbiphenyl generates [C9H96-C6H4(RuCp*)–C6H4(RuCp*)-η6-C9H9][BF4]2. The reaction of [Cp*Ru(H2O)(NBD)][BF4] with 1,4-diphenylbutadiyne simply generates unusual [2 + 2 + 2] additional organic compound Ph–C≡C–C9H8–Ph in addition to the organometallic compound [Cp*Ru(η6-C6H5–C≡C–C≡C–Ph)][BF4]. [C9H96-C6H4(RuCp*)–C6H4(RuCp*)-η6-C9H9][BPh4]2 is generated after the reaction of compound [C9H96-C6H4(RuCp*)–C6H4(RuCp*)-η6-C9H9][BF4]2 with Na[BPh4]. The structure of this compound was confirmed by X-ray diffraction. And the possible approach to form Ph–C≡C–C9H8–Ph and [Cp*Ru(η6-C6H5–C≡C–C≡C–Ph)][BF4] was suggested. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
The influence of the alumina support on the catalytic activity of Pt/Al2O3 catalysts in aqueous phase reforming of ethylene glycol to hydrogen was studied. The catalysts were prepared by impregnation of γ-, δ-, and α-alumina with H2PtCl6. The highest rate of hydrogen production (452 μmol min−1 g−1) obtained with the Pt/α-Al2O3 catalyst can be related to the highest extent of dispersion of Pt on α-Al2O3. XPS, TEM-EDX and TPR-H2 measurements showed the absence of chloride-containing surface complexes in the Pt/α-Al2O3 catalyst. However, chloride-containing entities were found on the surface of Pt/γ-Al2O3 and Pr/δ-Al2O3 catalysts. When chloride ions are removed chlorinated Pt species facilitate the sintering of Pt crystallites and in this way affect the extent of Pt dispersion. Moreover, depending upon the particular crystalline form, alumina atoms have different coordination and alumina surfaces contain varying amounts of OH groups of different nature which affect the interaction between Pt and the support.  相似文献   

11.
Electron paramagnetic resonance (EPR) and infrared (IR) spectroscopy were used to study the formation of ruthenium and adsorbed species appearing on the catalyst upon the adsorption of CO and O2 on 1.37 wt% Ru/MgF2 catalysts derived from Ru3(CO)12. The presence of Ru x+ sites in spite of a reductive H2 treatment at 673 K was observed by EPR and IR spectroscopy beside metallic Ru0 species. Both IR and EPR results provided clear evidence for the interaction between surface ruthenium and probe molecules. The IR spectra recorded after admission of CO showed a band at approx. 2000 cm−1, due to linearly adsorbed CO on Ru0/MgF2 and two bands at higher frequencies (approx. 2140 and approx. 2070 cm−1), related to CO on oxidized Ru n+ species, e.g., to Ru(CO)3 complex with Ru in the 1+ and/or 2+ state of oxidation and Ru(CO)2 with Ru in the 3+ and/or 4+ state of oxidation. A weak anisotropic EPR signal with g = 2.017 and g = 2.003 is due to O 2 radicals and a formation of Ru4+-O 2 complex is postulated. The Ru3+ appears to oxidize to Ru4+ and the resulting dioxygen anion is coordinated to the ruthenium. The strong, isotropic EPR signal at g 0 = 2.003 detected upon admission of CO is attributed to CO radical anion rather than to any ruthenium carbonyl complexes.  相似文献   

12.
A study was carried out on the properties of Ni/Al2O3 and Cu-ZnO/Al2O3 composites supported on ceramic honeycomb monoliths made from synthetic cordierite in the carbon dioxide conversion of methane and the partial oxidation of methanol. The structured nickel-alumina catalysts are significantly more efficient than the conventional granulated catalysts. The improved working stability of these catalysts was achieved by adjusting the acid-base properties of the surface by introducing sodium and potassium oxides, which leads to inhibition of surface carbonization. The hydrogen yield was close to 90% in the partial oxidation of methanol with a stoichiometric reagent ratio in the presence of the Cu-ZnO/Al2O3/cordierite catalyst. A synergistic effect was found, reducing the selectivity of CO formation in the presence of the Cu-ZnO catalyst relative to samples derived from the individual components Cu and ZnO. __________ Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 43, No. 5, pp. 299–306, September–October, 2007.  相似文献   

13.
A series of Pd/Al2O3–ZrO2 catalysts were prepared to be used in methane oxidation. The effect of the addition order of metal alkoxides on the texture, structure and catalytic properties of the solids is studied. The control of the preparation parameters is achieved via sol gel way as an attractive route of the preparation of these catalysts. N2 physisorption, XRD, Scanning Electronic Microscopy (SEM) and H2 chemisorption are the main techniques used to characterize the prepared Pd/Al2O3–ZrO2 catalysts. Textural analysis reveals the mesoporosity of all the catalysts independently of the addition order of alkoxides while surface area is more pronounced when the aluminium alkoxide is added before or with the zirconium precursor. XRD patterns show the development of the zirconia tetragonal phase for all the catalysts. Better metallic dispersion is obtained when aluminium alkoxide is added first which can be justified by the high homogeneity observed on the corresponding catalyst as revealed by SEM technique.  相似文献   

14.
Trimetallic NiMoW/Al2O3 catalyst was prepared using mixed H4SiMo3W9O40 heteropoly acid of Keggin structure and nickel citrate. Bimetallic NiMo/Al2O3 and NiW/Al2O3 catalysts based on H4SiMo12O40 and H4SiW12O40, respectively, were synthesized as reference samples. The use of mixed H4SiMo3W9O40 heteropoly acid as an oxide precursor allows the tungsten sulfidation degree and the degree of promotion of active phase particles to be increased. The hydrodesulfurization activity is enhanced as compared to NiW/Al2O3 catalyst. The synergistic enhancement of the activity of the NiMo3W9/Al2O3 catalyst relative to the bimetallic analogs is probably caused by formation of new mixed promoted active sites for direct desulfurization.  相似文献   

15.
Selective CO oxidation in a mixture simulating the methanol steam reforming product with an air admixture was studied over Ru/Al2O3 catalysts in a quasi-adiabatic reactor. On-line monitoring of the gas temperature in the catalyst bed and of the residual CO concentration at different reaction conditions made it possible to observe the ignition and quenching of the catalyst surface, including transitional regimes. A sharp decrease in the residual CO concentration takes place when the reaction passes to the ignition regime. The evolution of the temperature distribution in the catalyst bed in the ignition regime and the specific features of the steady-state and transitional regimes are considered, including the effect of the sample history. In selective CO oxidation and in H2 oxidation in the absence of CO, the catalyst is deactivated slowly because of ruthenium oxidation. In both reactions, the deactivated catalyst can be reactivated by short-term treatment with hydrogen. A 0.1% Ru/Al2O3 catalyst is suggested. In the surface ignition regime, this catalyst can reduce the residual CO concentration from 0.8 vol % to 10–15 ppm at O2/CO = 1 even in the presence of H2O and CO2 (up to ~20 vol %) at a volumetric flow rate of ~100 1 (g Cat)?1 h?1, which is one magnitude higher than the flow rates reported for this process in the literature.  相似文献   

16.
Four new triphenylgermylruthenium carbonyl compounds HRu(CO)4GePh3, 14; Ru(CO)4(GePh3)2, 15; Ru2(CO)8(GePh3)2, 16; and Ru3(CO)9(GePh3)3(μ-H)3, 17 were obtained from the reaction of Ru(CO)5 with Ph3GeH in hexane solvent at reflux, 68 °C. The major product 14 was formed by loss of CO from the Ru(CO)5 and an oxidative addition of the GeH bond of the Ph3GeH to the metal atom. This six coordinate complex contains one terminal hydrido ligand. Compound 15 is formed from 14 and contains two trans-positioned GePh3 ligands in the six coordinate complex. Compound 16 contains two Ru(CO)4(GePh3) fragments joined by an Ru–Ru single bond. Compound 17 contains a triangular cluster of three ruthenium atoms with three bridging hydrido ligands and one terminal GePh3 ligand on each metal atom. When heated to 125 °C, 14 was converted to the new triruthenium compound Ru3(CO)10(μ-GePh2)2, 18. Compound 18 consists of a triangular tri-ruthenium cluster with two GePh2 ligands bridging two different edges of the cluster and one bridging CO ligand. Ru3(CO)12 was found to react with Ph3GeH at 97 °C to yield three products: 15, and two new compounds Ru3(CO)9(μ-GePh2)3, 19 and Ru2(CO)6(μ-GePh2)2(GePh3)2, 20 were obtained. Compound 19 is similar to 18 having a triangular tri-ruthenium cluster but has three bridging GePh2 ligands, one on each Ru–Ru bond. Compound 20 contains only two ruthenium atoms joined by a single Ru–Ru bond that has two bridging GePh2 ligands and a terminal GePh3 ligand on each metal atom. All compounds were characterized by a combination of IR, 1H NMR, single-crystal X-ray diffraction analyses. This report is dedicated to Professor Dieter Fenske on the occasion of his 65th birthday for his many pioneering contributions to the chemistry of metal chalcogenide cluster complexes.  相似文献   

17.
A number of catalysts of the (Ru-Ni)/C system is synthesized and studied for application in anodes of alkaline ethanol-air fuel cells. The carbon supports used are carbon blacks with different specific surface area and graphite powders. The X-ray photoelectron spectroscopy technique allowed detecting on the catalyst surface metallic ruthenium and nickel in the form of Ni(OH)2 hydroxide and possibly oxyhydroxide NiOOH. It is shown that the catalyst activity in the reaction of ethanol electrochemical oxidation grows at an increase in the specific surface area of the carbon support. The method of carbon monoxide oxidative desorption was used to determine the values of the specific surface area of the catalyst metallic phase. It is shown that at an increase in the relative ruthenium content from (1Ru3Ni)/C to Ru/C, the specific catalytic activity in the catalysts of the (Ru-Ni)/C system reaches the maximum value near the composition of (2Ru1Ni)/C. It is shown that the found optimum catalyst composition is independent of the carbon support dispersion degree. Activity in ethanol electrooxidation of the (2Ru1Ni)/C catalyst supported on the Ketjenblack EC-600 carbon black is 18 ± 3 A/g of the catalyst (>120 A/g of Ru) at 40°C and potential E = 0.5 V in the 2MKOH + 1 M C2H5OH electrolyte.  相似文献   

18.
Global warming, fossil fuel depletion and fuel price increases have motivated scientists to search for methods for the storage and reduction of the amount of greenhouse gases, especially CO2. The hydrogenation process has been introduced as an emerging method of CO2 capture and convertion into value-added products. In this study, new types of catalysts are introduced for CO2 hydrogenation and are compared based on catalytic activity and product selectivity. The physical properties of the samples are specified using BET. Iron catalysts supported on γ-Al2O3 with different metal promoters (X = Ni, K, Mn, Cu) are prepared through the impregnation method. Moreover, Fe–Ni catalysts supported on HZSM5-Al2O3 and Ce–Al2O3 are synthesized. Samples are reduced by pure H2 and involved in hydrogenation reaction in a fixed bed reactor (H2/CO2 = 3, total pressure = 10 MPa, temperature = 523 K, GHSV = 2000, 1250 nml/min). All catalysts provide high conversion in hydrogenation reactions and the results illustrate that the selectivity of light hydrocarbons is higher than that of methane and CO. It is found that Ni has a promoting effect on the conversion fluctuations throughout the reaction with 66.13% conversion. Using combined supported catalysts leads to enhancing catalytic performance. When Fe–Ni/γ–Al2O3—HZSM5 is utilized, CO2 conversion is 81.66% and the stability of the Fe–Ni catalyst supported on Al2O3 and Ce–Al2O3 furthey improves.  相似文献   

19.
Adsorption microcalorimetry has been employed to study the interaction of ethylene with the reduced and oxidized Pt-Ag/SiO2catalysts with different Ag contents to elucidate the modified effect of Ag towards the hydrocarbon processing on platinum catalysts. In addition, microcalorimetric adsorption of H2, O2, CO and FTIR of CO adsorption were conducted to investigate the influence of Ag on the surface structure of Pt catalyst. It is found from the microcalorimetric results of H2and O2adsorption that the addition of Ag to Pt/SiO2leads to the enrichment of Ag on the catalyst surface which decreases the size of Pt surface ensembles of Pt-Ag/SiO2catalysts. The microcalorimetry and FTIR of CO adsorption indicates that there still exist sites for linear and bridged CO adsorption on the surface of platinum catalysts simultaneously although Ag was incorporated into Pt/SiO2. The ethylene microcalorimetric results show that the decrease of ensemble size of Pt surface sites suppresses the formation of dissociative species (ethylidyne) upon the chemisorption of C2H4on Pt-Ag/SiO2. The differential heat vs. uptake plots for C2H4adsorption on the oxygen-preadsorbed Pt/SiO2and Pt-Ag/SiO2catalysts suggest that the incorporation of Ag to Pt/SiO2could decrease the ability for the oxidation of C2H4.  相似文献   

20.
Platinum catalysts supported on indium-doped alumina were prepared by the sol–gel method. The method allows the incorporation of In3+ in the alumina network. The indium-doped alumina supports showed narrow pore size distribution (5.4–4.0 nm) and high specific surface areas (258–280 m2/g). The 27Al NMR-MAS spectroscopy identified aluminum in tetrahedral, pentahedral, and octahedral coordination; however, the intensity of the signal assigned to aluminum in pentahedral coordination diminishes with the increase of the content of indium. Total acidity determined by ammonia thermodesorption diminishes strongly in Pt/In–Al2O3 catalysts, suggesting a selective deposit of platinum over the acid sites of the support. The effect of the support in the platinum catalytic activity was evaluated in the n-heptane dehydrocyclization reaction. The selectivity patterns for such reaction were modified substantially in the doped Pt/In–Al2O3 catalysts, in comparison with the Pt-In/Al2O3–I coimpregnated reference catalyst. As an important result, the formation of benzene was suppressed totally over the indium-doped alumina sol–gel supports with a high content (3 wt%) of indium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号