首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polycrystalline (1−x)Ta2O5xTiO2 thin films were formed on Si by metalorganic decomposition (MOD) and annealed at various temperatures. As-deposited films were in the amorphous state and were completely transformed to crystalline after annealing above 600 °C. During crystallization, a thin interfacial SiO2 layer was formed at the (1−x)Ta2O5xTiO2/Si interface. Thin films with 0.92Ta2O5–0.08TiO2 composition exhibited superior insulating properties. The measured dielectric constant and dissipation factor at 1 MHz were 9 and 0.015, respectively, for films annealed at 900 °C. The interface trap density was 2.5×1011 cm−2 eV−1, and flatband voltage was −0.38 V. A charge storage density of 22.8 fC/μm2 was obtained at an applied electric field of 3 MV/cm. The leakage current density was lower than 4×10−9 A/cm2 up to an applied electric field of 6 MV/cm.  相似文献   

2.
In our work single crystals of Mg4.5Na7(P2O7)4 were prepared, pulverized, pressed into pellets and sintered in order to measure the electrical conductivity of polycrystalline specimens. The conductivity was also measured on glassy specimens obtained by the melting of previously prepared crystals. The electrical conductivities at 25°C with values of the order of 10−16 Ω−1 cm−1 for polycrystalline samples and a value of the order of 10−14 Ω−1 cm−1 for glass, show that the glassy phase of Mg4.5Na7(P2 because of its greater molar volume and loosely packed structure, is a better matrix for ionic motion.  相似文献   

3.
Impedance spectroscopy was used to study the oxygen reaction kinetics of La0.8Sr0.2MnO3 (LSM)-based electrodes on Y2O3-stabilized ZrO2 (YSZ) electrolytes. Three types of electrodes were studied: pure LSM, LSM–YSZ composites, and LSM/LSM–YSZ bilayers. The electrodes were formed by spin coating and sintering on single-crystal YSZ substrates. Measurements were taken at temperatures ranging from 550 to 850°C and oxygen partial pressures from 1×10−3 to 1 atm. An arc whose resistance Rel had a high activation energy, Ea=1.61±0.05 eV, and a weak oxygen partial pressure dependence, (PO2)−1/6, was observed for the LSM electrodes. A similar arc was observed for LSM–YSZ electrodes, where Rel(PO2)−0.29 and the activation energy was 1.49±0.02 eV. The combination of a high activation energy and a weak PO2 dependence was attributed to oxygen dissociation and adsorption rate-limiting steps for both types of electrodes. LSM–YSZ composite cathodes showed substantially lower overall interfacial resistance values than LSM, but exhibited an additional arc attributed to the resistance of YSZ grain boundaries within the LSM–YSZ. At 850°C and low PO2, an additional arc was observed with size varying as (PO2)−0.80 for LSM and (PO2)−0.57 for LSM–YSZ, suggesting that diffusion had become an additional rate limiting step. Bilayer LSM/LSM–YSZ electrodes yielded results intermediate between LSM and LSM–YSZ. The results showed that most of the improvement in electrode performance was achieved for a LSM–YSZ layer only ≈2 μm thick. However, a decrease in the grain-boundary resistance would produce much better performance in thicker LSM–YSZ electrodes.  相似文献   

4.
The results of the impedance spectroscopy measurements on eutectic samples based on zirconium oxide are presented here. Samples of CaZrO3---ZrO2(cubic) and MgO---ZrO2(cubic) have been grown by a directional solidification procedure such that the different phases appear nearly oriented along the growth direction (lamellae in the system of CaZrO3-ZrO2(cubic) and fibers of MgO in a ZrO2 matrix in the other system). The DC electrical conductivity has been measured by impedance spectroscopy along and across the growth axis. For CaZrO3---ZrO2 the coductivity is clearly anisotropic. The following values for σT have been obtained: the conductivity at 600 °C equals 2.0 × 10−6 Ω−1 cm−1 perpendicular to the fiber axis and 1.4 × 10−5 Ω−1 cm−1 parallel to it and with an activation energy of 1.3 eV for σT. For MgO---ZrO2(cubic) the isotropic value of the conductivity at 600 °C is 10−4 Ω−1 cm−1 with activation energy for σT of 1.5 eV. The anisotropic conductivity in the CaZrO3---ZrO2 (cubic) system has been explained by a model of an ordered stacking of oxygen conducting (cubic ZrO2) and non-conducting (CaZrO3 or MgO) phases.  相似文献   

5.
The effects of dopants on the electrical conductivity of the perovskite-type oxide LaInO3 have been investigated. Replacement of La by Sr is the most effective way to enhance the conductivity of LaInO3, whereas Ca substitution for In is rather difficult due to the large difference in the ion radii. The optimum composition is La0.9Sr0.1InO3−δ whose maximum conductivity is 7.6×10−3 S cm−1 at 900°C. The electrical conductivity of La0.9Sr0.1InO3−δ has been measured over a wide range of oxygen partial pressure from pO2=1 to 10−25 atm. P-type and n-type behavior at high and low oxygen partial pressure have been observed, respectively, while at intermediate oxygen partial pressures, the electrical conductivity changes only slightly with the oxygen partial pressure. The concept of a single layer solid oxide fuel cell based on a La0.9Sr0.1InO3−δ ceramic pellet has been tested. A maximum power density of 3 mW cm−2 at 800°C was achieved when dilute H2 and air were used as fuel and oxidizing agent, respectively.  相似文献   

6.
By undertaking AC electrochemical impedance experiments on yttria stabilised zirconia electrolytes with polished Y1Ba2Cu3O7−x electrodes, the activation energy for oxygen ion transport within the bulk of Y1Ba2Cu3O7−x, in air, over the temperature range 823 K–1043 K, was determined to be 1.50 ± 0.05 eV. At 1000 K the oxygen ionic conductivity was calculated to be around one order of magnitude lower than that in yttria stabilised zirconia. Typical calculated values were σ=5×10−5 (ω cm)−1 and 6×10−3 (ω cm)−1 at the respective temperatures 823 K and 1043 K. By employing a similar cell but with Y1Ba2Cu3O7−x paste electrodes, oxygen transfer between the Y1Ba2Cu3O7−x and the electrolyte was found to occur via a surface diffusional processes. Over the temperature range 873 K–1098 K, in air, the activation energy for in-diffusion at the surface was found to be 1.4±0.1 eV and that for out-diffusion at the surface to be 1.76±0.05 eV.  相似文献   

7.
Nd2CuO4±δ is the non-superconducting prototype of the Re2−xMxCuO4ty family (Re=Pr, Nd, Sm and M=Ceor Th) of n-type oxide superconductors. Four-probe DC conductivity, EMF in P(O2) gradient, and thermopower measurements have been used to characterise its electric transport and defect structure between 300 and 900°C and between 5×10−4 and 1 atm oxygen partial pressure.

The results show that Nd2CuO4±δ can be oxygen under-stoichiometric (with n-type conductivity), near-stoichiometric, and over-stoichiometric (with p-type conductivity) in different T, P(O2) ranges.  相似文献   


8.
In this study, we will develop the influences of the excess x wt% (x=0, 1, 2, and 3) Bi2O3-doped and the different fabricating process on the sintering and dielectric characteristics of 0.95 (Na0.5Bi0.5)TiO3–0.05 BaTiO3 ferroelectric ceramics with the aid of SEM and X-ray diffraction patterns, and dielectric–temperature curves. The 0.95 (Na0.5Bi0.5)TiO3–0.05 BaTiO3+x wt% Bi2O3 ceramics are fabricated by two different processes. The first process is that (Na0.5Bi0.5)TiO3 composition is calcined at 850 °C and BaTiO3 composition is calcined at 1100 °C, then the calcined (Na0.5Bi0.5)TiO3 and BaTiO3 powders are mixed in according to 0.95 (Na0.5Bi0.5)TiO3–0.05 BaTiO3+x wt% Bi2O3 compositions. The second process is that the raw materials are mixed in accordance to the 0.95 (Na0.5Bi0.5)TiO3–0.05 BaTiO3+x wt% Bi2O3 compositions and then calcining at 900 °C. The sintering process is carried out in air for 2 h from 1120 to 1240 °C. After sintering, the effects of process parameters on the dielectric characteristics will be developed by the dielectric–temperature curves. Dielectric–temperature properties are also investigated at the temperatures of 30–350 °C and at the frequencies of 10 kHz–1 MHz.  相似文献   

9.
A new lithium ionic conductor of the thio-LISICON (LIthium SuperIonic CONductor) family was found in the binary Li2S–P2S5 system; the new solid solution with the composition range 0.0≤x≤0.27 in Li3+5xP1−xS4 was synthesized at 700 °C and characterized by X-ray diffraction measurements. Its electrical and electrochemical properties were studied by ac impedance and cyclic voltammetry measurements, respectively. The solid solution member at x=0.065 in Li3+5xP1−xS4 showed the highest conductivity value of 1.5×10−4 S cm−1 at 27 °C with negligible electronic conductivity and the activation energy of 22 kJ mol−1 which is characteristic of high ionic conduction state. The extra lithium ions in Li3PS4 created by partial substitution of P5+ for Li+ led to the large increase in ionic conductivity. In the solid solution range examined, the minimum conductivity was obtained for the compositions, Li3PS4 (x=0.0 in Li3+5xP1−xS4) and Li4P0.8S4 (x=0.2 in Li3+5xP1−xS4); this conductivity behavior is similar to other thio-LISICON family with the general formula, LixM1−yMy′S4 (M=Si, Ge, and M′=P, Al, Zn, Ga, Sb). Conduction mechanism and the material design concepts are discussed based on the conduction behavior and the structure considerations.  相似文献   

10.
A series of polyacrylonitrile–dimethylsulfoxide–CuX2 (X=CF3SO3, Cl, Br), films (foils) were prepared by means of the solution cast technique. The thickness of the foils was between 0.04 and 0.09 cm and they contained 70–80 wt.% of the solvent. Conductivities of the solid electrolytes were obtained from impedance measurements. The conductivity increases with the increase of the salt content up to 8 wt.%; at higher concentrations (>8 wt.%) the conductivity is more or less stable, and reaches, in the case of Cu(CF3SO3)2 and CuCl2, the level of ca. 10−3 Ω−1 cm−1 at room temperature. The foils based on the CuBr2 show even higher conductivity, close to 10−2 Ω−1 cm−1 at room temperature, a value comparable to that characteristic for liquid solutions. The temperature variation of the conductivity for all the systems studied is of the Arrhenius type. The activation energy, determined from linear plots lnσ=f(T−1), is of the order ca. 14 kJ mol−1 for the PAN/CuBr2/DMSO and of ca. 21 kJ mol−1 for the PAN/CuCl2/DMSO and the PAN/Cu(CF3SO3)2/DMSO systems.  相似文献   

11.
Ohmic contacts to p-type CuCrO2 using Ni/Au/CrB2/Ti/Au contact metallurgy are reported. The samples were annealed in the 200–700 °C range for 60 s in flowing oxygen ambient. A minimum specific contact resistance of 2 × 10−5 Ω cm2 was obtained after annealing at 400 °C. Further increase in the annealing temperature (>400 °C) resulted in the degradation of contact resistance. Auger Electron Spectroscopy (AES) depth profiling showed that out-diffusion of Ti to the surface of the contact stacks was evident by 400 °C, followed by Cr at higher temperature. The CrB2 diffusion barrier decreases the specific contact resistance by almost two orders of magnitude relative to Ni/Au alone.  相似文献   

12.
《Solid State Ionics》2001,140(3-4):361-367
A series of polyacrylonitrile–sulfolane–CuX2 (PAN–TMS–CuX2, where X=Cl, Br, CF3SO3) polymer electrolytes, of thickness between 0.03 and 0.07 cm, were prepared by means of the solution cast technique. The solvent content was as high as 60–70 wt.%. Conductivities of the foils obtained from impedance measurements were of the order of 10−3 Ω−1 cm−1. Temperature variation of the conductivity for all the systems studied was of the Arrhenius type. Exchange current density at the Cuelectrolyte interface, determined from the Tafel plot, was of the order of milliampere (mA). Cyclic voltammetry showed the irreversible character of the copper plating–stripping process.  相似文献   

13.
We have investigated the thermal and ionic conductivity properties of the elastomer poly(ethylene oxide-co-epichlorohydrin) filled with NaI and I2. The reason for using this composition is its potential application as electrolyte in photoelectrochemical cells. This copolymer was characterized as a function of NaI concentration, temperature and relative humidity. According to the data obtained, the Na+ ion interacts with the ethylene oxide repeating units by means of Lewis type acid–base interactions. The empirical Vogel–Tamman–Fulcher equation was used to model the conductivity and temperature relationships, indicating that the conduction occurs in the amorphous phase of the copolymer. The sample with 9.0% (w/w) of NaI presents a conductivity of 1.5×10−5 S cm−1 in a dry atmosphere (30°C, [H2O]<1 ppm) and 2.0×10−4 S cm−1 at 86% relative humidity (22°C).  相似文献   

14.
Glass–ceramics for sealing solid oxide fuel cells (SOFCs) were developed by sintering and crystallization of the powdered glass seal. The non-isothermal sintering kinetics and crystallization kinetics were studied for four glasses in the system 50SiO2·(45−x)BaO·xRO·5Al2O3 (R=Ca, Mg, Zn and x=0, 15) (mol%). Hot-stage microscopy (HSM) and differential thermal analysis (DTA) measurements demonstrated that it is possible to first sinter and then crystallize these glasses obtaining glass–ceramic seals with thermal expansion coefficients in the range 9–12×10−6 K−1.

The non-isothermal sintering kinetics was analyzed by computer simulations using a previously reported model of sintering for polydispersed glass powders which takes into account the particle size distribution, surface energy and viscosity. Good agreement was found between the measured kinetics with HSM and the calculated kinetics for all glasses.  相似文献   


15.
The electrical property of (La1−xSrx)1−z(Al1−yMgy)O3−δ (LSAM; x≤0.3, y≤0.15 and z≤0.1) was measured using the DC four-probe method as a function of temperature (500–1000°C) and oxygen partial pressure (1–10−22 atm). Among LSAMs, (La0.9Sr0.1)AlO3−δ showed the highest ionic conductivity, σi=1.3×10−2 S cm−1 at 900°C. A simultaneous substitution at A and B sites or A site deficiency is expected to create larger oxygen vacancy and higher ionic conductivity. However, it showed a negative effect. The effect of the vacancy increase did not effect monotonously the ionic conductivity. It was found that the concentration of oxygen vacancy, [VO], influences not only the oxide ion conductivity, σi, but also the mobility, μv, of [VO]. These properties exhibit a maximum at around [VO]=0.05. With the increase in [VO], the activation energy, Ea, of the ionic conduction dropped from 1.8 to ca. 1.0 eV at [VO]=0.05 and became almost constant at [VO]>0.05. The dependency of the pre-exponential term, μ0v, and Ea on [VO] was analyzed and their effect on μv and σi was discussed with respect to crystal structure and defect association. It was estimated that the crystal structure mainly governs these properties. The effect of defect association could not be ignored but is considered to be a complicated correlation.  相似文献   

16.
Novel hyperbranched polymer, poly[bis(diethylene glycol)benzoate] capped with a 3,5-bis[(3′,6′,9′-trioxodecyl)oxy]benzoyl group (poly-Bz1a), was prepared, and its polymer electrolyte with LiN(CF3SO2)2, poly-Bz1a/LiN(CF3SO2)2 electrolyte, was all evaluated in thermal properties, ionic conductivity, and electrochemical stability window. The poly-Bz1a/LiN(CF3SO2)2 electrolyte exhibited higher ionic conductivity compared with a polymer electrolyte based on poly[bis(diethylene glycol)benzoate] capped with an acetyl group (poly-Ac1a), and the ionic conductivity of poly-Bz1a/LiN(CF3SO2)2 electrolyte was to be 7×10−4 S cm−1 at 80 °C and 1×10−6 S cm−1 at 30 °C, respectively. The existence of a 3,5-bis[(3′,6′,9′-trioxodecyl)oxy]benzoyl group as a branching unit present at ends in the base polymer improved significantly ionic conductivity of the hyperbranched polymer electrolytes. The polymer electrolyte exhibited the electrochemical stability window of 4.2 V at 70 °C and was stable until 300 °C.  相似文献   

17.
Thin films of copper oxide with thickness ranging from 0.05–0.45 μm were deposited on microscope glass slides by successively dipping them for 20 s each in a solution of 1 M NaOH and then in a solution of copper complex. Temperature of the NaOH solution was varied from 50–90°C, while that of the copper solution was maintained at room temperature. X-ray diffraction patterns showed that the films, as prepared, are of cuprite structure with composition Cu2O. Annealing the films in air at 350°C converts these films to CuO. This conversion is accompanied by a shift in the optical band gap from 2.1 eV (direct) to 1.75 eV (direct). The films show p-type conductivity, 5×10−4 Ω−1 cm−1 for a film of thickness 0.15 μm. Electrical conductivity of this film increases by a factor of 3 when illuminated with 1 kW m−2 tungsten halogen radiation. Annealing in a nitrogen atmosphere at temperatures up to 400°C does not change the composition of the films. However, the conductivity in the dark as well as the photoconductivity of the film increases by an order of magnitude. The electrical conductivity of the CuO thin films produced by air annealing at 400°C, is high, 7×10−3 Ω−1 cm−1. These films are also photoconductive.  相似文献   

18.
Oxygen tracer diffusion (D*) and surface exchange rate constant (k*) have been measured, using isotopic exchange and depth profiling by secondary ion mass spectrometry (SIMS), in La1−xSrxFe0.8Cr0.2O3−δ (x=0.2, 0.4 and 0.6). Measurements were made as a function of temperature (700–1000 °C) and oxygen partial pressure (0.21–10−21 atm) in dry oxygen, water vapour and water vapour/hydrogen/nitrogen mixtures. At high oxygen activity, D* was found to increase with increasing temperature and Sr content. The activation energies for D* in air are 2.13 eV (x=0.2), 1.53 eV (x=0.4) and 1.21 eV (x=0.6). As the oxygen activity decreases, D* increases as expected qualitatively from the increase in oxygen vacancy concentration. Under strongly reducing conditions, the measured values of D* at 1000 °C range from 10−8 cm2 s−1 for x=0.2 to 10−7 cm2 s−1 for x=0.4 and 0.6. The activation energies determined at constant H2O/H2 ratio are 1.21 eV (x=0.2), 1.59 eV (x=0.4) and 0.82 eV (x=0.6).

The surface exchange rate constant of oxygen for the H2O molecule is similar in magnitude to that for the O2 molecule and both increase with increasing Sr concentration.  相似文献   


19.
Electrical properties of calcia-doped ceria with oxygen ion conduction   总被引:3,自引:0,他引:3  
The electrical conductivity of sintered specimens of (CeO2)1−x(CaO)x was investigated by employing a standard four-probe dc technique as a function of temperature between 400°C and 900°C, composition from 0.10x0.80, and oxygen partial pressure from 10−18 to 1 atm. The temperature and composition dependence of the emf have been carried out with a concentration cell. X-ray diffraction studies indicated that a cubic fluorite crystal remained in all specimens studied, although the solubility limit of CaO in CeO2 was assumed to lie close to 23 mol% from the change of the lattice constant. The magnitude of the conductivity decreased slightly with increase of the dopant concentrations up to x=0.50. The conductivity of these specimens was about 100 times larger than that of calcia-stabilized zirconia at 600°C with a smaller activation energies of 0.83–0.89 eV. With further increasing dopant concentrations, the magnitude of the conductivity was found to decrease remarkably. With an increase in the dopant concentration, the domain of primarily ionic conduction extended to a lower partial pressure. The conductivity of (CeO2)0.50(CaO)0.50 was found to be primarily ionic down to 10−12 atm even at 900°C. These results indicate that CaO-doped CeO2 may be more an attractive candidate for fuel cells and other applications.  相似文献   

20.
Transport properties of SrCe0.95Y0.05O3−δ were studied by impedance spectroscopy and by measuring open-cell voltage (OCV) and gas permeation. Ionic transference numbers were determined by measuring the OCV of concentration cells and water vapor evolution of an O2/H2 fuel cell. We observed interfacial polarization on the basis of the IV curves obtained by discharging a hydrogen concentration cell or an O2/H2 fuel cell. The observed high protonic conductivity (high proton and low oxide ion transference numbers) makes SrCe0.95Y0.05O3−δ a potential material for hydrogen separation. From proton conductivity measurements, under a given hydrogen partial pressure difference of 4%/0.488%, the hydrogen permeation rate (of a dense membrane with 0.11 cm in thickness) was calculated to be ≈0.072 cm3 (STP) cm−2 min−1 at 800°C, whereas the permeation rate calculated from short-circuit current measurements was ≈0.023 cm3 (STP) cm−2 min−1 at 800°C. The difference between calculated and observed permeation rates is probably due to interfacial polarization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号