首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study boundary value problems on compact graphs without circles (i.e. on trees) for second-order ordinary differential equations with nonlinear dependence on the spectral parameter. We establish properties of the spectral characteristics and investigate the inverse spectral problem of recovering the coefficients of the differential equation from the so-called Weyl vector which is a generalization of the Weyl function (m-function) for the classical Sturm-Liouville operator. For this inverse problem we prove the uniqueness theorem and obtain a procedure for constructing the solution by the method of spectral mappings.  相似文献   

2.
3.
We consider the periodic Zakharov-Shabat operators on the real line. The spectrum of this operator consists of intervals separated by gaps with the lengths |gn|?0, nZ. Let be the corresponding effective masses and let hn be heights of the corresponding slits in the quasi-momentum domain. We obtain a priori estimates of sequences g=(|gn|)nZ, , h=(hn)nZ in terms of weighted ?p-norms at p?1. The proof is based on the analysis of the quasi-momentum as the conformal mapping.  相似文献   

4.
We consider an eigenvalue problem for a system on [0, 1]: $$\left\{ {\begin{array}{*{20}l} {\left[ {\left( {\begin{array}{*{20}c} 0 & 1 \\ 1 & 0 \\ \end{array} } \right)\frac{{\text{d}}} {{{\text{d}}x}} + \left( {\begin{array}{*{20}c} {p_{11} (x)} & {p_{12} (x)} \\ {p_{21} (x)} & {p_{22} (x)} \\ \end{array} } \right)} \right]\left( {\begin{array}{*{20}c} {\varphi ^{(1)} (x)} \\ {\varphi ^{(2)} (x)} \\ \end{array} } \right) = \lambda \left( {\begin{array}{*{20}c} {\varphi ^{(1)} (x)} \\ {\varphi ^{(1)} (x)} \\ \end{array} } \right)} \\ {\varphi ^{(2)} (0)\cosh \mu - \varphi ^{(1)} (0)\sinh \mu = \varphi ^{(2)} (1)\cosh \nu + \varphi ^{(1)} (1)\sinh \nu = 0} \\ \end{array} } \right.$$ with constants $$\mu ,\nu \in \mathbb{C}.$$ Under the assumption that p21, p22 are known, we prove a uniqueness theorem and provide a reconstruction formula for p11 and p12 from the spectral characteristics consisting of one spectrum and the associated norming constants.  相似文献   

5.
6.
We prove that all the eigenvalues of a certain highly non-self-adjoint Sturm-Liouville differential operator are real. The results presented are motivated by and extend those recently found by various authors (Benilov et al. (2003) [3], Davies (2007) [7] and Weir (2008) [18]) on the stability of a model describing small oscillations of a thin layer of fluid inside a rotating cylinder.  相似文献   

7.
8.
In this paper we obtain general infinite dimensional inertia theorems for linear pencils in Hilbert space which cover previously known results for the finite dimensional case and for block weighted shifts. Connections with definite subspaces for contractions in spaces with indefinite metric are discussed.  相似文献   

9.
Sturm–Liouville differential operators on compact trees with general matching conditions in internal vertices are studied. We establish properties of the spectral characteristics and investigate three inverse problems of recovering the operator either from the so-called Weyl functions, or from discrete spectral data or from a system of spectra. For these inverse problems, we prove the corresponding uniqueness theorems and obtain procedures for constructing their solutions by the method of spectral mappings.  相似文献   

10.
Borg-type uniqueness theorems for matrix-valued Jacobi operators H and supersymmetric Dirac difference operators D are proved. More precisely, assuming reflectionless matrix coefficients A,B in the self-adjoint Jacobi operator H=AS++A-S-+B (with S± the right/left shift operators on the lattice Z) and the spectrum of H to be a compact interval [E-,E+], E-<E+, we prove that A and B are certain multiples of the identity matrix. An analogous result which, however, displays a certain novel nonuniqueness feature, is proved for supersymmetric self-adjoint Dirac difference operators D with spectrum given by , 0?E-<E+.Our approach is based on trace formulas and matrix-valued (exponential) Herglotz representation theorems. As a by-product of our techniques we obtain the extension of Flaschka's Borg-type result for periodic scalar Jacobi operators to the class of reflectionless matrix-valued Jacobi operators.  相似文献   

11.
The two-dimensional canonical systemJy=–Hy where the nonnegative Hamiltonian matrix functionH(x) is trace-normed on (0, ) has been studied in a function-theoretic way by L. de Branges in [5]–[8]. We show that the Hamiltonian system induces a closed symmetric relation which can be reduced to a, not necessarily densely defined, symmetric operator by means of Kac' indivisible intervals; of. [33], [34]. The formal defect numbers related to the system are the defect numbers of this reduced minimal symmetric operator. By using de Branges' one-to-one correspondence between the class of Nevanlinna functions and such canonical systems we extend our canonical system from (0, ) to a trace-normed system on which is in the limit-point case at ±. This allows us to study all possible selfadjoint realizations of the original system by means of a boundaryvalue problem for the extended canonical system involving an interface condition at 0.  相似文献   

12.
An operator theoretic framework is developed to determine the essential spectra of diagonal dominant coupled systems of differential equations. Applications are given to the Ekman boundary layer problem and to the Hagen-Poiseuille flow problem with non-axisymmetric disturbances.  相似文献   

13.
The inverse input impedance problem is investigated in the class of canonical integral systems with matrizants that are strongly regular J-inner matrix valued functions in the sense introduced in [ArD1]. The set of solutions for a problem with a given input impedance matrix (i.e., Weyl- Titchmarsh function) is parameterized by chains of associated pairs of entire inner p × p matrix valued functions. In our considerations the given data for the inverse bitangential input impedance problem is such a chain and an input impedance matrix, i.e., a p × p matrix valued function in the Carathéodory class. Existence and uniqueness theorems for the solution of this problem are obtained by consideration of a corresponding family of generalized bitangential Carathéodory interpolation problems. The connection between the inverse bitangential input scattering problem that was studied in [ArD4] and the bitangential input impedance problem is also exploited. The successive sections deal with: 1. The introduction, 2. Domains of linear fractional transformations, 3. Associated pairs of the first and second kind, 4. Matrix balls, 5. The classification of canonical systems via the limit ball, 6. The Weyl-Titchmarsh characterization of the input impedance, 7. Applications of interpolation to the bitangential inverse input impedance problem. Formulas for recovering the underlying canonical integral systems, examples and related results on the inverse bitangential spectral problem will be presented in subsequent publications.D. Z. Arov thanks the Weizmann Institute of Science for hospitality and support, partially as a Varon Visiting Professor and partially through the Minerva Foundation. H. Dym thanks Renee and Jay Weiss for endowing the chair which supports his research and the Minerva Foundation.  相似文献   

14.
Given a piecewise continuous function and a projection P1 onto a subspace X1 of CN, we investigate the injectivity, surjectivity and, more generally, the Fredholm properties of the ordinary differential operator with boundary condition . This operator acts from the “natural” space into L2×X1. A main novelty is that it is not assumed that A is bounded or that has any dichotomy, except to discuss the impact of the results on this special case. We show that all the functional properties of interest, including the characterization of the Fredholm index, can be related to the existence of a selfadjoint solution H of the Riccati differential inequality . Special attention is given to the simple case when H=A+A satisfies this inequality. When H is known, all the other hypotheses and criteria are easily verifiable in most concrete problems.  相似文献   

15.
Let the functionQ be holomorphic in he upper half plane + and such that ImQ(z 0 and ImzQ(z) 0 ifz +. A basic result of M.G. Krein states that these functionsQ are the principal Titchmarsh-Weyl coefficiens of a (regular or singular) stringS[L,m] with a (non-decreasing) mass distribution functionm on some interval [0,L) with a free left endpoint 0. This string corresponds to the eigenvalue problemdf + fdm = 0; f(0–) = 0. In this note we show that the set of functionsQ which are holomorphic in + and such that the kernel has negative squares of + and ImzQ(z) 0 ifz + is the principal Titchmarsh-Weyl coefficient of a generalized string, which is described by the eigenvalue problemdf +f dm + 2 fdD = 0 on [0,L),f(0–) = 0. Here is the number of pointsx whereD increases or 0 >m(x + 0) –m(x – 0) –; outside of these pointsx the functionm is locally non-decreasing and the functionD is constant.To the memory of M.G. Krein with deep gratitude and affection.This author is supported by the Fonds zur Förderung der wissenschaftlichen Forschung of Austria, Project P 09832  相似文献   

16.
We consider the free streaming operator associated with conservative boundary conditions. It is known that this operator (with its usual domain) admits an extension A which generates a C0-semigroup in L1. With techniques borrowed from the additive perturbation theory of substochastic semigroups, we describe precisely its domain and provide necessary and sufficient conditions ensuring to be stochastic. We apply these results to examples from kinetic theory.  相似文献   

17.
The class of two-dimensional trace-normed canonical systems of differential equations on is considered with selfadjoint interface conditions at 0. If one or both of the intervals around 0 are H-indivisible the interface conditions which give rise to selfadjoint relations (multi-valued operators) are determined. It is shown that the corresponding generalized Fourier transforms are partially isometric. Compression to the halfline (0, ) results in boundary conditions which depend on the eigenvalue parameter involving a fractional linear transform of the Titchmarsh-Weyl coefficient of the halfline (–, 0). The corresponding generalized Fourier transforms are isometric except possibly on a one-dimensional subspace where they are contractive.  相似文献   

18.
We study Sturm–Liouville differential operators on noncompact graphs without cycles (i.e., on trees) with standard matching conditions in internal vertices. First we establish properties of the spectral characteristics and then we investigate the inverse problem of recovering the operator from the so-called Weyl vector. For this inverse problem we prove a uniqueness theorem and propose a procedure for constructing the solution using the method of spectral mappings. Received: February 13, 2007.  相似文献   

19.
We study the inverse spectral problem for a class of Bessel operators given in L2(0,1) by the differential expression
  相似文献   

20.
We consider a singular two-dimensional canonical systemJy=–zHy on [0, ) such that at Weyl's limit point case holds. HereH is a measurable, real and nonnegative definite matrix function, called Hamiltonian. From results of L. de Branges it follows that the correspondence between canonical systems and their Titchmarsh-Weyl coefficients is a bijection between the class of all Hamiltonians with trH=1 and the class of Nevanlinna functions. In this note we show how the HamiltonianH of a canonical system changes if its Titchmarsh-Weyl coefficient or the corresponding spectral measure undergoes certain small perturbations. This generalizes results of H. Dym and N. Kravitsky for so-called vibrating strings, in particular a generalization of a construction principle of I.M. Gelfand and B.M. Levitan can be shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号