首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 1,5-bis(3,5-dimethyl-1-pyrazolyl)-3-thiapentane ligand (bdtp) reacts with [Rh(COD)(THF)2][BF4] to give [Rh(COD)(bdtp)][BF4] ([1][BF4]), which is fluxional in solution on the NMR time scale. Its further treatment with carbon monoxide leads to a displacement of the 1,5-cyclooctadiene ligand, generating a mixture of two complexes, namely, [Rh(CO)2(bdtp)][BF4] ([2][BF4]) and [Rh(CO)(bdtp3N,N,S)][BF4] ([3][BF4]). In solution, [2][BF4] exists as a mixture of two isomers, [Rh(CO)2(bdtp2N,N)]+ ([2a]+) and [Rh(CO)2(bdtp3N,N,S)]+ ([2b]+; major isomer) rapidly interconverting on the NMR time scale. At room temperature, [2][BF4] easily loses one molecule of carbon monoxide to give [3][BF4]. The latter is prone to react with carbon monoxide to partially regenerate [2][BF4]. The ligands 1,2-bis[3-(3,5-dimethyl-1-pyrazolyl)-2-thiapropyl]benzene (bddf) and 1,8-bis(3,5-dimethyl-1-pyrazolyl)-3,6-dithiaoctane (bddo) are seen to react with two equivalents of [Rh(COD)(THF)2][BF4] to give the dinuclear complexes [Rh2(bddf)(COD)2][BF4]2 ([4][BF4]2) and [Rh2(bddo)(COD)2][BF4]2 ([5][BF4]2), respectively. In such complexes, the ligand acts as a double pincer holding two rhodium atoms through a chelation involving S and N donor atoms. Bubbling carbon monoxide into a solution of [4][BF4]2 results in loss of the COD ligand and carbonylation to give [Rh2(bddf)(CO)4][BF4]2 ([6][BF4]2). The single-crystal X-ray structures of [3][CF3SO3], [5][BF4]2 and [6][BF4]2 are reported.  相似文献   

2.
Reaction of 3,4-dimethylphospholylthallium (Tl-1) with [CpMCl2]2 (M = Rh, Ir) leads to the formation of the dimeric species [(CpM)2(Me2C4H2P)3]+2 and 3 with bridging μ-η11-phospholyl ligands. The phosphametallocenium sandwich complexes [CpM(Me2C4(SiMe3)2P)]+7 (M = Rh) and 8 (M = Ir) could be obtained from the reaction of [CpMCl2]2 and the 2,5-bis(trimethylsilyl)-1-trimethylstannylphosphole 6, with the bulky trimethylsilyl groups preventing the phosphole from η1- and enforcing a η5-coordination. The structures of phospharhodocenium cation 7 and a byproduct 9 containing a phosphairidocenium moiety could be determined by X-ray diffraction.  相似文献   

3.
The reaction between 1-boranyl-1,3,5-triaza-7-phosphaadamantane ligand N-B-PTA(BH3) and [CpRhCl(μ-Cl)]2 affords [CpRh{N-B-PTA(BH3)}Cl2] (3) or [CpRh{N-B-PTA(BH3)}2Cl]Cl (5) containing one or two P-bonded boronated PTA ligands. The hydride [CpRh{N-B-PTA(BH3)}H2] (8) was also obtained by reaction of 3 with NaBH4 and alternatively by direct hydroboration of [CpRh(PTA)Cl2] with excess NaBH4. Moderately slow hydrolysis of the N-boranyl rhodium complexes affords dihydrogen, H3BO3 and the corresponding PTA derivatives, including the water-soluble dihydride [CpRh(PTA)H2] (9). Finally, the reaction of 8 with electron poor alkynes gives the alkene complexes [CpRh{N-B-PTA(BH3)}(η2-CH2 = CHR)] (R = Ph, 10; C(O)OEt, 11) as a mixture of rotamers η2-coordinated to rhodium without affecting the N-BH3 moiety. The X-ray crystal structures of 3 and 10 were also obtained and are here discussed.  相似文献   

4.
N-heterocyclic bis-carbene ligand (bis-NHC) which was derived from 1,1′-diisopropyl-3,3′-ethylenediimidazolium dibromide (L·2HBr) via silver carbene transfer method, reacted with [(η6-p-cymene)RuCl2]2 and [CpMCl2]2 (Cp = η5-C5Me5, M = Ir, Rh) respectively, afforded complexes [(η6-p-cymene)RuCl2]2(L) (1), [CpIrCl2]2(L) (2) and [CpRhCl(L)][CpRhCl3] (3). When [CpIrCl2]2 was treated with 2 equiv AgOTf at first, and then reacted with bis-NHC ligand, [CpIrCl(L)]OTf (4) was obtained. The molecular structures of complexes 1-4 were determined by X-ray single crystal analysis, showing that 1 and 2 adopted bridging coordination mode, 3 and 4 adopted chelating coordination mode. All of these complexes were characterized by 1H, 13C NMR spectroscopy and element analysis.  相似文献   

5.
The 16-electron half-sandwich complexes CpRh[E2C2(B10H10)] (E = S, 1a; Se, 1b) react with [Ru(COD)Cl2]x under different conditions to give different types of heterometallic complexes. When the reactions were carried out in THF for 24 h, the binuclear Rh/Ru complexes [CpRh(μ-Cl)2(COD)Ru][E2C2(B10H10)] (E = S, 2a; Se, 2b) bridged by two Cl atoms and the binuclear Rh/Rh complexes (CpRh)2[E2C2(B10H10)] (E = S, 3a; Se, 3b) with direct Rh-Rh bond can be isolated in moderate yields. [Ru(COD)Cl2] fragments in 2a and 2b have inserted into the Rh-E bond. If the [Ru(COD)Cl2]x was reacted with 1a in the presence of K2CO3 in methanol solution, the product [CpRh(COD)]Ru[S2C2(B10H10]] (4a), K[(μ-Cl)(μ-OCH3)Ru(COD)]4 (5a) and 3a were obtained. The B(3)-H activation in complex 4a was found. However, when the reaction between 1b and [Ru(COD)Cl2]x was carried out in excessive NaHCO3, the carborane cage opened products {CpRh[S2C2(B9H10)]}Ru(COD) (6b), {CpRh[S2C2(B9H9)]}Ru(COD)(OCH3) (7b) and 3b were obtained. All complexes were fully characterized by their IR, 1H NMR and elemental analyses. The molecular structures of 2a, 2b, 3b, 4a, 5a, and 7b have been determined by X-ray crystallography.  相似文献   

6.
The compound [Os3(CO)10(μ-Cl)(μ-AuPPh3)] (2) was prepared from the reaction between [Os3(CO)10(NCMe)2] (1) and [AuClPPh3] under mild conditions. The reaction of 2 with 4-mercaptopyridine (4-pyS) ligand yielded compounds [Os3(CO)10(μ-H)(μ-SC5H4N)] (4), formed by isolobal replacement of the fragment [AuPPh3]+ by H+ and [Os3(CO)10(μ-AuPPh3)(μ-SC5H4N)] (5). [Os3(CO)10(μ-H)(μ-SC5H4N)] (4) was also obtained by substitution of two acetonitrile ligands in the activated cluster 1 by 4-pyS, at room temperature in dichloromethane. Compounds 2-5 were characterized spectroscopically and the molecular structures of 4 and 5 in the solid state were obtained by single crystal X-ray diffraction studies.  相似文献   

7.
Triple-decker complexes with a bridging borole ligand (C4H4BPh)Rh(μ-C4H4BPh)ML (ML = RuCp, 2a; RuCp, 2b; FeCp, 3; Co(C4Me4), 4; Ir(cod), 5) were synthesized by stacking reactions of [Rh(C4H4BPh)2] (1) with cationic [ML]+ fragments. The structures of 2a,b and (C4H4BPh)Rh(μ-C4H4BPh)Rh(C4H4BPh) (6) were determined by X-ray diffraction.  相似文献   

8.
Treatment of parent compounds [(μ-SCH2)2X]Fe2(CO)6 (A, X = O; B, X = NBu-t; C, X = NC6H4OMe-p) with N-heterocyclic carbene IMes (IMes = 1,3-bis(mesityl)imidazol-2-ylidene) generated in situ through reaction of imidazolium salt IMes ·HCl with n-BuLi or t-BuOK afforded the monocarbene-substituted complexes [(μ-SCH2)2X]Fe2(CO)5(IMes) (1, X = O; 2, X = NBu-t; 3, X = NC6H4OMe-p). Similarly, the monocarbene and dicarbene-substituted complexes [(μ-SCH2)2NBu-t]Fe2(CO)5[IMes(CH2)3IMes]·HBr (4) and [(μ-SCH2)2CH2Fe2(CO)5]2[μ-IMes(CH2)3IMes] (5, IMes = 1-(mesityl)imidazol-2-ylidene) could be prepared by reactions of parent compound B with the mono-NHC ligand-containing imidazolium salt [IMes(CH2)3IMes] · HBr and parent compound [(μ-SCH2)2CH2]Fe2(CO)6 (D) with di-NHC ligand IMes(CH2)3IMes (both NHC ligands were generated in situ from reaction of n-BuLi with imidazolium salt [IMesIMes(CH2)3IMes] · 2HBr), respectively. The imidazolium salt [IMes(CH2)3IMes] · 2HBr was prepared by reaction of 1-(mesityl)imidazole with Br(CH2)3Br. All the new model compounds 1-5 and imidazolium salt [IMes(CH2)3IMes] · 2HBr were fully characterized by elemental analysis, spectroscopy, and X-ray crystallography. On the basis of electrochemical studies of 1 and 2, compound 2 was found to be a catalyst for proton reduction to hydrogen. In addition, an EECC mechanism for this electrocatalytic reaction is preliminarily suggested.  相似文献   

9.
New rhodium and iridium complexes, with the formula [MCl(PBz3)(cod)] [M = Rh (1), Ir (2)] and [M(PBz3)2(cod)]PF6 [M = Rh (3), Ir (4)] (cod = 1,5-cyclooctadiene), stabilized by the tribenzylphosphine ligand (PBz3) were synthesized and characterized by elemental analysis and spectroscopic methods. The molecular structures of 1 and 2 were determined by single-crystal X-ray diffraction. The addition of pyridine to a methanol solution of 1or 2, followed by metathetical reaction with NH4PF6, gave the corresponding derivatives [M(py)(PBz3)(cod)]PF6 [M = Rh (5), Ir (6)]. At room temperature in CHCl3 solution, 4 converted spontaneously to the ortho-metallated complex [IrH(PBz3)(cod){η2-P,C-(C6H4CH2)PBz2}]PF6 (7) as a mixture of cis/trans isomers via intramolecular C-H activation of a benzylic phenyl ring. The reaction of 3 or 4 with hydrogen in coordinating solvents gave the dihydrido bis(solvento) derivative [M(H)2(S)2(PBz3)2]PF6 (M = Rh, Ir; S = acetone, acetonitrile, THF), that transformed into the corresponding dicarbonyls [M(H)2(CO)2(PBz3)2]PF6 by treatment with CO. Analogous cis-dihydrido complexes [M(H)2(THF)2(py)(PBz3)2]PF6 (M = Rh, Ir) were observed by reaction of the py derivatives 5 and 6 with H2.  相似文献   

10.
Treatment of the bulky iminophosphine ligand [Ph2PCH2C(Ph)N(2,6-Me2C6H3)] (L) with [M(CH3CN)2(ligand)]+n, where for M = Pd(II): ligand = η3-allyl, n = 1, and for M = Rh(I), ligand: 2(C2H4), 2(CO) or cod, n = 0, yields the mono-cationic iminophosphine complexes [Pd(η3-C3H5)(L)][BF4] (1), [Rh(cod)(L)][BF4] (2), [Rh(CO)(CH3CN)(L)][BF4] (3), and cis-[Rh(L)2][BF4] (4). All the new complexes have been characterised by NMR spectroscopy and X-ray diffraction. Complex 1 shows moderate activity in the copolymerisation of CO and ethene but is inactive towards Heck coupling of 4-bromoacetophenone and n-butyl acrylate.  相似文献   

11.
Trans-[RuPy4(CN)2 cleaves chloro-rhodium bridges in rhodium(I) binuclear complexes, [Rh(CO)2Cl]2, [Rh(Cod)Cl]2, and [(Cod)RhCl2Rh(CO)2] yielding heterometallic triad complexes, [(CO)2ClRh(NC)RuPy4(CN)RhCl(CO)2] (I), [(Cod)ClRh(NC)RuPy4(CN)RhCl(Cod)] (II), and [(Cod)ClRh(NC)RuPy4(CN)RhCl(CO)2] (III), respectively. In solutions, III coexists with equilibrium amounts of I and II in the near-binomial proportions. Under action of [Rh(CO)2Cl]2, II transforms into I with parallel formation of [Rh(Cod)Cl]2. Ligand effect transmission along the L-Rh-NC-Ru-CN-Rh-L′ chain is studied by 1H and 13C NMR. Chemical shifts δ1H and δ13C of Ru-bound Py ligands are sensitive to the nature of Rh-bound ligands. Values of δ1H and δ13C of Cod and 13C of CO ligands are sensitive to the ligands at the remote end of the L-Rh-NC-Ru-CN-Rh-L′ chain. Reaction of trans-[RuPy4(CN)2] with Rh2(OAc)4 yields an apparently linear polymer [-Rh(OAc)4Rh-NCRuPy4CN-]. Upon action of [Rh(CO)2Cl]2, the polymer decomposes yielding I and Rh2(OAc)4. X-ray structure data for I are given.  相似文献   

12.
Reactions of [M(Cp)Cl(μ-Cl)]2 (M = Ir(1a); M = Rh(1b)) with tridentate ligands tpt (tpt = 2,4,6-tripyridyl-1,3,5-triazine) gave the corresponding trinuclear complexes [M3(Cp)33-4-tpt-κN)Cl6] (M = Ir(2a); M = Rh(2b)), which can be converted into hexanuclear complexes [M6(Cp)63-4-tpt-κN)2(μ-Cl)6](O3SCF3)6 (M = Ir(3a); M = Rh(3b)) by treatment with AgO3SCF3, respectively. X-ray of 3b revealed that each of six pentamethylcyclopentadienyl metal moieties was connected by two μ-Cl-bridged atoms and a tridentate ligand to construct a cation triangular metallo-prism cavity with the volume of about 273 Å3 based on the distance of the two triazine moieties is 3.62 Å.  相似文献   

13.
Reactions of 0.5 eq. of the dinuclear complexes [(η6-arene)Ru(μ-Cl)Cl]2 (arene = η6-C6H6, η6-p-iPrC6H4Me) and [(Cp∗)M(μ-Cl)Cl]2 (M = Rh, Ir; Cp∗ = η5-C5Me5) with 4,6-disubstituted pyrazolyl-pyrimidine ligands (L) viz. 4,6-bis(pyrazolyl)pyrimidine (L1), 4,6-bis(3-methyl-pyrazolyl)pyrimidine (L2), 4,6-bis(3,5-dimethyl-pyrazolyl)pyrimidine (L3) lead to the formation of the cationic mononuclear complexes [(η6-C6H6)Ru(L)Cl]+ (L = L1, 1; L2, 2; L3, 3), [(η6-p-iPrC6H4Me)Ru(L)Cl]+ (L = L1, 4; L2, 5; L3, 6), [(Cp∗)Rh(L)Cl]+ (L = L1, 7; L2, 8; L3, 9) and [(Cp∗)Ir(L)Cl]+ (L = L1, 10; L2, 11; L3, 12), while reactions with 1.0 eq. of the dinuclear complexes [(η6-arene)Ru(μ-Cl)Cl]2 and [(Cp∗)M(μ-Cl)Cl]2 give rise to the dicationic dinuclear complexes [{(η6-C6H6)RuCl}2(L)]2+ (L = L1, 13; L2, 14; L3, 15), [{(η6-p-iPrC6H4Me)RuCl}2(L)]2+ (L = L1, 16; L2, 17; L3, 18), [{(Cp∗)RhCl}2(L)]2+ (L = L1, 19; L2, 20; L3, 21) and [{(Cp∗)IrCl}2(L)]2+ (L = L1 22; L2, 23; L3 24). The molecular structures of [3]PF6, [6]PF6, [7]PF6 and [18](PF6)2 have been established by single crystal X-ray structure analysis.  相似文献   

14.
The reaction of the labile compound [Re2(CO)8(CH3CN)2] with trans-1,2-bis(2-pyridyl)ethene (C12H10N2) at room temperature in tetrahydrofuran affords the compounds [Re2(μ:η3-C12H10N2)(CO)8] (1) and the oxidative addition product [Re2(μ-H)(μ:η3-C12H9N2)(CO)7] (2). When the reaction is carried out at temperatures of refluxing tetrahydrofuran, besides compounds 1 and 2, the oxidative addition product [Re2(μ-H)(μ:η4-C12H9N2)(CO)6] (3), the insertion product [Re2(μ:η4-C12H10N2)(CO)8] (4) and [Re2(μ:η6-C24H18N4)(CO)6] (5) are obtained. Compound 5 contains the organic ligand rtct-tetrakis(2-pyridyl)cyclobutandiyl which is derived from a [2 + 2] cycloaddition of 1,2-bis(2-pyridyl)ethene mediated by its coordination to the bimetallic framework. The molecular structures of 1, 2, 4 and 5 were confirmed by X-ray crystallographic studies.  相似文献   

15.
The early-late heterometallic complexes [TiCp((OCH2)2Py)(μ-O)M(COD)] (M = Rh, Ir) behave as four-electron donor ligands yielding the polynuclear cationic complexes [TiCp(OCH2)2 Py(μ-O){M(COD)}2]OTf (M = Rh (1), Ir (2)). The molecular structure of complex 1 has been established through an X-ray diffraction study.  相似文献   

16.
The synthesis of half-sandwich binuclear transition-metal complexes containing the CabC,C chelate ligands (CabC,C = C2B10H10 (1)) is described. 1Li2 was reacted with chloride-bridged dimers [Cp∗RhCl(μ-Cl)]2 (Cp∗ = η5-C5(CH3)5), [Cp′RhCl(μ-Cl)]2 (Cp′ = η5-1,3-tBu2C5H3), [Cp∗IrCl(μ-Cl)]2 and [(p-cymene)RuCl(μ-Cl)]2 to give half-sandwich binuclear complexes [Cp∗Rh(μ-Cl)]2(CabC,C) (2), [Cp′Rh(μ-Cl)]2(CabC,C) [3),[Cp∗Ir(μ-Cl)]2(CabC,C) (4) and [(p-cymene)Ru(μ-Cl)]2(CabC,C) (5), respectively. Addition reactions of the ruthenium complex 5 with air gave [(p-cymene)2Ru2(μ-OH)(μ-Cl)](CabC,C) (6), rhodium complex 2 with LiSPh gave [Cp∗Rh(μ-SPh)]2(CabC,C) (7). The complexes were characterized by IR, NMR spectroscopy and elemental analysis. In addition, X-ray structure analysis were performed on complexes 2-7 where the potential C,C-chelate ligand was found to coordinate in a bidentate mode as a bridge.  相似文献   

17.
Reaction of the iridium tetracarbonylate [PPN][Ir(CO)4] (1a) with triphenylcyclopropenyl tetrafluoroborate [C3Ph3][BF4] afforded two dinuclear species Ir2(CO)4(μ,η12-C3Ph3)(μ,η23-C3Ph3) (2) and Ir2(CO)4(μ,η44-C6Ph6) (3a) resulting from the ring opening and in the latter case, coupling of the resulting acyclic, propenyl ligands. The analogous reaction with [PPN][Rh(CO)4] (1b) afforded only the rhodium analogue for 3a.  相似文献   

18.
A new route was used to synthesize half-sandwich rhodium complexes containing both N-heterocyclic carbenes (NHC) and carborane ligands. The rhodium carbene complexes CpRh(L)[S2C2(B10H10)] (Cp = pentamethylcyclopentadienyl, L = 1,3-dimethylimidazolin-2-ylidene; 4) can be obtained from the reaction of CpRh(L)Cl2 (2) with Li2S2C2(B10H10) or from the reaction of CpRh[S2C2(B10H10)] (3) with silver-NHC complex prepared by direct reaction of an imidazolium precursor and Ag2O. Complexes 2 and 4 were characterized by IR, NMR spectroscopy, element analysis and X-ray structure analyses.  相似文献   

19.
Photochemical reactions of the dinitrogen complex CpRe(CO)2N2 with tetrachloroethylene and trichloroethylene yield the coordination complexes CpRe(CO)22-tetrachloroethylene) (1) and CpRe(CO)22-trichloroethylene) (2), respectively. Complex 1 reacts thermally in polar organic solvents to produce the C-Cl bond activation product cis-CpRe(CO)2(C2Cl3)Cl (3). All complexes were isolated and characterized by IR, 1H and 13C NMR spectroscopies and mass spectrometry. Complex 3 was also characterized by X-ray crystallography.  相似文献   

20.
Ruthenium piano-stool complexes incorporating the new bidentate aminoalkylphosphine ligand 1,2-bis(dipyrrolidin-1-ylphosphino)ethane (dpyrpe, I) or its monodentate counterpart bis(pyrrolidin-1-yl)methylphosphine (pyr2PMe, II) have been prepared, [(C5R5)RuCl(PP)] (R = Me and PP = dpyrpe, 1; R = Me and PP = (pyr2PMe)2, 2; R = H and PP = dpyrpe, 3). Complexes 2 and 3 have been characterized by X-ray crystallography. Complexes 1 and 2 react with NaBAr4f in the presence of ligand L to yield [CpRu(L)(dpyrpe-κ2P)][BArf4] (L = MeCN, 4a; CO, 4b; N2, 4c) and [CpRu(L)(pyr2PMe)2][BAr4f] (L = MeCN, 5a; CO, 5b; N2, 5c). Complex 4a was crystallographically characterized. The CO complexes 4b and 5b were examined using IR spectroscopy in an attempt to establish the electron-donating capabilities of I and II. Complex 1 oxidatively adds H2 in the presence of NaBAr4f to yield the Ru(IV) dihydride [CpRuH2(dpyrpe-κ2P)][BAr4f], 7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号