共查询到18条相似文献,搜索用时 46 毫秒
1.
采用5种方法,即溶胶-凝胶法、高温固相法、共沉淀法、水热法和溶剂热法合成了富锂材料Li_(1.2)Mn_(0.6)Ni_(0.2)O_2。拉曼光谱研究发现共沉淀法制备的样品是固溶体结构,而其他4个样品是以不同尺度共生形成的复合物结构。电化学性能测试结果表明这5个富锂材料性能存在明显差异,尤其是在首次充电过程中5个样品位于4.5 V以上由Li_2MnO_3组分活化所贡献的容量明显不同,共沉淀法制备的具有固溶体结构的样品中由Li_2MnO_3组分活化贡献的容量最多。由此我们建立起电化学性能与两相集成方式的联系,不同的集成方式使得Li_2MnO_3组分活化所贡献的容量不同,进而影响了最终的电化学性能。 相似文献
2.
采用3种不同pH值的去离子水,NH4NO3和H2C2O4溶液对富锂层状正极材料Li[Li0.2Mn0.54Ni0.13Co0.13]O2进行表面化学侵蚀改性,旨在改善其整体电化学性能。ICP结果表明pH值对材料中Li的析出具有显著影响。X射线衍射(XRD)表明表面化学侵蚀对材料的结构有影响。拉曼光谱(Raman spectroscopy)表明材料表面结构发生了变化。H2C2O4溶液侵蚀过的样品的首次效率有了极大提高,但同时中值电压和循环性能显著恶化。NH4NO3溶液侵蚀过的样品的首次效率从63%提高到了85%,1C倍率下的放电比容量从149 mAh·g-1提高到194 mAh·g-1,同时保持了温和的中值电压变化曲线。通过高分辨透射电镜(HRTEM),X射线光电子能谱(XPS)和电化学阻抗谱(EIS)对改性机理进行了研究。 相似文献
3.
采用3种不同pH值的去离子水,NH4NO3和H2C2O4溶液对富锂层状正极材料Li[Li0.2Mn0.54Ni0.13Co0.13]O2进行表面化学侵蚀改性,旨在改善其整体电化学性能。ICP结果表明pH值对材料中Li的析出具有显著影响。X射线衍射(XRD)表明表面化学侵蚀对材料的结构有影响。拉曼光谱(Raman spectroscopy)表明材料表面结构发生了变化。H2C2O4溶液侵蚀过的样品的首次效率有了极大提高,但同时中值电压和循环性能显著恶化。NH4NO3溶液侵蚀过的样品的首次效率从63%提高到了85%,1C倍率下的放电比容量从149 mAh·g-1提高到194 mAh·g-1,同时保持了温和的中值电压变化曲线。通过高分辨透射电镜(HRTEM),X射线光电子能谱(XPS)和电化学阻抗谱(EIS)对改性机理进行了研究。 相似文献
4.
采用喷雾干燥法合成了富锂层状氧化物正极材料0.6Li[Li_(1/3)Mn_(2/3)]O2·0.4LiNi_(5/12)Mn_(5/12)Co_(1/6)O_2(简称LNMCO),并使用Zr(CH3COO)4进行ZrO_2的包覆改性。TEM测试结果显示纳米级的ZrO_2颗粒附着在LNMCO的表面。包覆质量分数为1.5%的ZrO_2包覆样品的首圈库伦效率和放电比容量有着显著提升,在室温下其首圈库伦效率和放电比容量(电流密度:20 m A·g-1,电压:2.0~4.8 V)分别为87.2%,279.3 m Ah·g-1,而原样则为75.1%,224.1 m Ah·g-1,循环100圈之后,1.5%ZrO_2包覆样品的放电比容量为248.3 m Ah·g-1,容量保持率为88.9%,高于原样的195.9 m Ah·g-1和87.4%。 相似文献
5.
采用喷雾干燥法合成了富锂层状氧化物正极材料0.6Li[Li1/3Mn2/3]O2·0.4LiNi5/12Mn5/12Co1/6O2(简称LNMCO),并使用Zr (CH3COO)4进行ZrO2的包覆改性。TEM测试结果显示纳米级的ZrO2颗粒附着在LNMCO的表面。包覆质量分数为1.5%的ZrO2包覆样品的首圈库伦效率和放电比容量有着显著提升,在室温下其首圈库伦效率和放电比容量(电流密度:20 mA·g-1,电压:2.0~4.8 V)分别为87.2%,279.3 mAh·g-1,而原样则为75.1%,224.1 mAh·g-1,循环100圈之后,1.5% ZrO2包覆样品的放电比容量为248.3 mAh·g-1,容量保持率为88.9%,高于原样的195.9 mAh·g-1和87.4%。 相似文献
6.
采用碳酸盐共沉淀与燃烧法相结合的方法制备得到了多孔微纳球形结构的富锂正极材料0.6Li_2MnO_3·0.4LiNi_(0.5)Mn_(0.5)O_2。借助X射线衍射(XRD)分析、X射线光电子能谱(XPS)、扫描电镜(SEM)、透射电镜(TEM)、N2吸附-脱附和恒电流充放电测试研究了其晶体结构、微观形貌和电化学性能。结果表明该方法制备出的材料是由一次颗粒径约300 nm的小颗粒组成的多孔微纳球形结构,比表面积为13 m2·g~(-1),具有完善的α-NaFeO_2层状结构(空间群为R3m)。电化学性能测试结果证实该材料具有优异的高容量、高循环稳定性和高倍率性能。在2.0~4.8 V,电流密度为0.1C、0.2C、0.5C、1C、3C、5C和10C时的放电比容量分别为:266、254、235、205、186、149和107 m Ah·g~(-1);在0.5C下循环100次后,放电比容量仍为217 m Ah·g~(-1)(容量保持率为94%)。 相似文献
7.
采用碳酸盐共沉淀与燃烧法相结合的方法制备得到了多孔微纳球形结构的富锂正极材料0.6Li2MnO3·0.4LiNi0.5Mn0.5O2。借助X射线衍射(XRD)分析、X射线光电子能谱(XPS)、扫描电镜(SEM)、透射电镜(TEM)、N2吸附-脱附和恒电流充放电测试研究了其晶体结构、微观形貌和电化学性能。结果表明该方法制备出的材料是由一次颗粒径约300 nm的小颗粒组成的多孔微纳球形结构,比表面积为13 m2·g-1,具有完善的α-NaFeO2层状结构(空间群为R3m)。电化学性能测试结果证实该材料具有优异的高容量、高循环稳定性和高倍率性能。在2.0~4.8 V,电流密度为0.1C、0.2C、0.5C、1C、3C、5C和10C时的放电比容量分别为:266、254、235、205、186、149和107 mAh·g-1;在0.5C下循环100次后,放电比容量仍为217 mAh·g-1(容量保持率为94%)。 相似文献
8.
采用氢氧化物共沉淀和熔盐法相结合的方法制备得到了电化学性能优异的富锂锰基Li_(1.5)Ni_(0.25)Mn_(0.75)O_(2.5)正极材料。借助X射线衍射(XRD)分析、扫描电镜(SEM)、感应耦合等离子体原子发射光谱(ICP-AES)、X射线光电子能谱(XPS)、电化学阻抗谱(EIS)和恒电流充放电测试等表征手段对材料的颗粒形貌、晶体结构和电化学性能进行了系统研究。XRD结果表明该材料具有完善的α-NaFeO2层状结构(空间群为R3m)和较低的Li~+/Ni~(2+)阳离子混排。电化学性能测试表明该材料的首次不可逆容量损失较小,且倍率性能和循环稳定性能十分优异。具体而言,在2.0~4.8V,0.1C时的首次不可逆容量损失为50mAh·g~(-1)(首次库伦效率84%);在10C时的放电比容量还能达到102mAh·g~(-1);在0.5C下循环100次后,放电比容量为205mAh·g~(-1)(容量保持率90%)。 相似文献
9.
采用氢氧化物共沉淀和熔盐法相结合的方法制备得到了电化学性能优异的富锂锰基Li1.5Ni0.25Mn0.75O2.5正极材料。借助X射线衍射(XRD)分析、扫描电镜(SEM)、感应耦合等离子体原子发射光谱(ICP-AES)、X射线光电子能谱(XPS)、电化学阻抗谱(EIS)和恒电流充放电测试等表征手段对材料的颗粒形貌、晶体结构和电化学性能进行了系统研究。XRD结果表明该材料具有完善的α-NaFeO2层状结构(空间群为R3m)和较低的Li+/Ni2+阳离子混排。电化学性能测试表明该材料的首次不可逆容量损失较小,且倍率性能和循环稳定性能十分优异。具体而言,在2.0~4.8 V,0.1C时的首次不可逆容量损失为50 mAh·g-1(首次库伦效率84%);在10C时的放电比容量还能达到102 mAh·g-1;在0.5C下循环100次后,放电比容量为205 mAh·g-1(容量保持率90%)。 相似文献
10.
采用碳酸盐共沉淀的方法成功制备了不同二次颗粒粒径的富锂层状正极材料Li1.2Mn0.54Ni0.13Co0.13O2。并运用X射线衍射(XRD)、场发射扫描电镜(FESEM)、激光粒度测试和电化学测试等手段对所得材料的结构、形貌、粒度分布及电化学性能进行表征。结果显示,不同二次颗粒粒径的Li1.2Mn0.54Ni0.13Co0.13O2在材料结构上没有明显的差别,且首次放电比容量接近,均达到了281 mAh·g-1。但是,二次颗粒粒径越小,富锂层状材料的表现出的倍率性能越优异,当二次颗粒的D50为4.59μm,其在3C倍率下的放电容量达到了199 mAh·g-1。这是因为二次颗粒粒径越小,富锂层状材料可更好的与导电剂和电解液接触,且锂离子的扩散路径更短,从而表现出更好的倍率特性。 相似文献
11.
应用共沉淀结合固相烧结合成了富锂层状氧化物(Li-rich layered oxide,LLO)Li1.2Ni0.13Co0.13Mn0.54O2. 对制备的富锂材料用氧化石墨烯(Graphene Oxide,GO)包覆后,再经300 oC空气中煅烧,制备了石墨烯(Graphene,Gra)卷绕包覆的复合材料(LLO/Gra). 使用扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)和X射线光电子能谱(XPS)及电化学方法表征所得样品. 结果表明,富锂层状氧化物均匀地卷绕在石墨烯中. 与原始富锂材料相比,石墨烯包覆后的复合材料表现出更加优异的电化学性能. 尤其是石墨烯卷绕可以改善富锂材料的导电性,提高材料的放电倍率性能,在2.0至4.8 V电压范围内,0.1C(20 mA·g-1)电流充放电下,容量达270 mAh·g-1,1C倍率下复合物的放电容量接近200 mAh·g-1,比原始LLO材料170 mAh·g-1提高了15%. 相似文献
12.
采用喷雾干燥法制备了xLi[Li1/3Mn2/3]O2-(1-x)LiNi5/12Mn5/12Co2/12O2(0≤x≤0.8)系列富锂层状固溶体正极材料, 并通过X射线衍射(XRD)、高分辨透射电子显微镜(HRTEM)、X射线光电子能谱(XPS)、电化学阻抗测试(EIS)以及充放电测试等多种手段研究了样品组分中Li2MnO3 含量变化对材料结构及电化学性能的影响.研究发现, 材料的微观结构随着Li2MnO3含量的增加而逐渐发生转变.当x≤0.2时, 样品的微观结构与其母体材料LiNi5/12Mn5/12Co2/12O2相似; 而当x≥0.4时, 样品的微观结构与Li2MnO3有很高的相似性.当x=0.3时, 材料表现出两相共存的特征.HRTEM结果显示, 随着Li2MnO3含量的增加, 样品中过渡金属原子的排列逐渐由长程有序转变为长程无序而短程有序, 并且在高Li2MnO3含量的样品中观察到了金属阳离子混排的现象.充放电测试结果表明, 当x≤0.6时, 材料的放电比容量随着x的增加而增加; 当x>0.6时, 其放电比容量则随着x的增加而下降; 当x=0.6时, 放电比容量最高, 室温及高温(50℃)下分别为260 和304 mA·h/g.EIS研究结果表明, 这种微观结构上由有序向无序的转变会导致材料电荷转移阻抗的增加, 进而影响材料的电化学性能. 相似文献
13.
采用LiNO3和MnO2为原料,在650℃下制备了尖晶石型的LiMn2O4.通过X射线衍射、扫描电子显微镜、热重分析和电化学性能测试,发现该化合物具有很高的放电比容量和较好的循环性能,首次放电比容量可达到122 mA·h/g.并对循环性能衰减的各种因素进行了讨论. 相似文献
14.
通过共沉淀法制备了M(OH)2(M=Mn, Ni)前驱体, 并与LiOH混合, 合成了锂离子电池富锂正极材料Li[NixLi1/3-2x/3Mn2/3-x/3]O2, 采用XRD、SEM和充放电实验对其进行表征. 研究结果表明, Li, Ni, Mn原子在M层中呈有序分布, 形成超结构; 富锂正极材料由亚微米的一次粒子团聚组成1~3 μm颗粒; 在2.0~4.8 V电位范围内, 充放电电流密度为10 mA/g时, 富锂正极材料表现出很高的可逆比容量, 达到200~240 mA·h/g, 同时具有良好的循环可逆性能. 相似文献
15.
通过改性Pechini方法合成不同Co含量的富锂正极材料Li[Li(1/3-x/3)CoxMn(2/3-x/3)]O2 (x=0.4, 0.5, 0.6). XRD研究结果表明, 不同Co含量的富锂正极材料均具有良好的层状结构, 结晶度高. 电化学测试结果表明材料的初始容量随Co含量的增加而增加, 在200~220 mAh/g之间. 其中x=0.4材料的循环性能最佳, 在0.5 C (100 mA/g)时, 循环50次后的容量保持率为75%. 容量微分曲线研究结果表明在3.5 V以下出现了Mn4+/Mn3+的还原峰, 并随循环次数的增加峰面积加大. 循环过程的XRD研究表明, 随着充放电次数的增加, 富锂正极材料的层状结构逐渐向尖晶石相转变, 且有杂质相MOx (M=Co, Mn)生成, 导致容量衰减. 相似文献
16.
17.
Yongseon Kim 《International journal of quantum chemistry》2019,119(24):e26028
The doping behavior of Zr in LiNi8/12Co2/12Mn2/12O2 (LNCM) is investigated by a simulation of the phase equilibria for the Li-(M*,Zr)-O system (M* = Ni, Co, Mn) based on first-principles calculations followed by a thermochemical post-analysis of the resultant phase diagrams. The results indicate that the stable state at the synthetically stoichiometric composition of LNCM with Zr is a mixture of undoped LNCM with a Li2ZrO3 secondary phase; doping of Zr in the LNCM crystal is not thermodynamically favored. The energies of various states comprising LNCM supercells with defects, secondary phases, and Zr doping are examined, and the equilibrium doping concentration of Zr is calculated by considering the entire LNCM:Zr crystal as a statistical combination of these states. The doping concentration of Zr in the LNCM crystal is calculated to be very low, which enables balanced control between doping and coating, as recently reported through experimentation. The dopability of Zr is expected to increase with the depletion of O2 supply during the heating of a system with a precisely controlled Li to M* ratio, but this behavior is affected by the formation of defects, especially by M* substitution for Li. 相似文献