首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nd content was varied in Nd_(13.2-x)Fe_(80.8+x)B_6(x = 0, 0.5, 1, and 1.5) to optimize the magnetic properties of sintered Nd–Fe–B/Tb–Fe–B composite magnets, which were prepared by mixing 9 g of Nd–Fe–B with 1 g of Tb_(17)Fe_(75)B_8 powder.In conventional magnets, by reducing Nd content, the coercivity of 10.4 kOe in Nd_(13.2)Fe_(80.8)B_6 decreases to 7.2 kOe in Nd_(12.2)Fe_(81.8)B_6; meanwhile, in Nd–Fe–B/Tb–Fe–B magnets the coercivity does not decrease when reducing Nd content.In the intergranular phase, the Tb content increases owing to the reducing Nd content of the Nd–Fe–B alloy in the sintered composite magnets.Therefore, the excess Tb in Tb_(17)Fe_(75)B_8 enters the intergranular phase, and more Tb atoms can substitute for Nd at the grain boundary of the Nd–Fe–B phase, leading to a more significant increase in coercivity.The remanence increases with reducing Nd content, and the energy product of 39.1 MGOe with a high coercivity of 21.0 kOe is obtained in Nd_(12.2)Fe_(81.8)B_6/Tb_(17)Fe_(75)B_8 magnets.These investigations show that magnetic properties can be further improved by regulating the element distribution in sintered composite magnets.  相似文献   

2.
We investigate the effect of the optimized aging processing on magnetism and mechanical property of the sintered Dydoped Nd–Fe–B permanent magnet. The experimental results show that the magnetism, especially intrinsic coercivity, of the optimized aged Dy-doped Nd–Fe–B magnet is more excellent than that of the sintered one, but the former's strength and hardness are lower than that of the latter. It was observed that the optimized aged Dy-doped Nd–Fe–B magnet have more uniform grain size, thinner(Nd, Dy)-rich boundary phase. By means of the EBSD technology, the number of larger angle grain boundaries in the optimized aged Dy-doped Nd–Fe–B magnet is more than that of the sintered one. The reasons for the increased intrinsic coercivity and decreased mechanical properties of the optimized aged Dy-doped Nd–Fe–B magnet are also discussed.  相似文献   

3.
MM_(14)Fe_(79.9)B_(6.1)/Nd_(13.5)Fe_(80.5)B_6 magnets were fabricated by dual alloy method(MM, misch metal). Some magnets have two Curie temperatures. Curie temperatures T_(c1)corresponds to the main phase which contains more La Ce, and T_(c1) decreases from 276.5?C to 256.6?C with the content of MM increasing from 30.3 at.% to 50.6 at.%. The variation of Br with the increase of MM indicates the existence of inter-grain exchange coupling in the magnets. When MM/R ≤ 30.3 at.%,the magnetic properties can reach the level of the intrinsic coercivity Hcj≥ 7.11 kOe and the maximum energy product(BH)max≥ 41 MGOe. Compared with Nd, La and Ce are easier to diffuse to the grain boundaries in the sintering process,and this will cause the decrease of H_(cj) Due to the diffusion between the grains, the atomic ratio of La, Ce, Pr, and Nd in each grain is different and the percentage of Nd in all grains is higher than that in misch metal.  相似文献   

4.
Permanent magnets capable of reliably operating at high temperatures up to ~450?C are required in advanced power systems for future aircrafts, vehicles, and ships. Those operating temperatures are far beyond the capability of Nd–Fe–B magnets. Possessing high Curie temperature, Sm–Co based magnets are still very important because of their hightemperature capability, excellent thermal stability, and better corrosion resistance. The extensive research performed around the year 2000 resulted in a new class of Sm_2(Co, Fe, Cu, Zr)_(17)-type magnets capable of operating at high temperatures up to 550?C. This paper gives a systematic review of the development of Sm–Co permanent magnets, from the crystal structures and phase diagrams to the intrinsic magnetic properties. An emphasis is placed on Sm_2(Co, Fe, Cu, Zr)_(17)-type magnets for operation at temperatures from 300?C to 550?C. The thermal stability issues, including instantaneous temperature coefficients of magnetic properties, are discussed in detail. The significance of nanograin structure, nanocrystalline, and nanocomposite Sm–Co magnet materials, and prospects of future rare-earth permanent magnets are also given.  相似文献   

5.
《中国物理 B》2021,30(6):67503-067503
We investigate the effects of post-sinter annealing on the microstructure and magnetic properties in B-lean Nd–Fe–B sintered magnets with different quantities of Nd–Ga intergranular additions. The magnet with fewer Nd–Ga additions can enhance 0.2 T in coercivity, with its remanences nearly unchanged after annealing. With the further increase of the Nd–Ga addition, the annealing process leads coercivity to increase 0.4 T, accompanied by a slight decrease of remanence. With the Nd–Ga addition further increasing and after annealing, however, the increase of coercivity is basically constant and the change of remanence is reduced. Microstructure observation indicates that the matrix grains are covered by continuous thin grain boundary phase in the magnets with an appropriate Nd–Ga concentration after the annealing process. However, the exceeding Nd–Ga addition brings out notable segregation of grain boundary phase, and prior formation of part RE6 Fe13 Ga phase in the sintered magnet. This prior formation results in a weaker change of remanence after the annealing process.Therefore, the diverse changes of magnetic properties with different Nd–Ga concentrations are based on the respective evolution of grain boundary after the annealing process.  相似文献   

6.
The misch-metal(MM) partially substituted Nd–Fe–B sintered magnets were fabricated by the dual alloy method,and the crystal structure, microstructure, and magnetic properties were analyzed comprehensively. X-ray diffraction(XRD)reveals that the increasing content of the MM has an inconsiderable effect on the crystallographic alignment of the magnets.Grains of the two main phases are uniformly distributed, and slightly deteriorate on the grain boundary. Due to the diffusion between the adjacent grains, the MM substituted Nd–Fe–B magnets contain three types of components with different Ce/La concentrations. Moreover, the first-order reversal curve(FORC) diagram is introduced to analyze the magnetization reversal process, coercivity mechanism, and distribution of reversal field in magnetic samples. The analysis indicates that there are two major reversal components, corresponding to the two different main phases. The domain nucleation and growth are determined to be the leading mechanism in controlling the magnetization reversal processes of the magnets sintered by the dual alloy method.  相似文献   

7.
This review summarizes the recent advances on the application of 57Fe M?ssbauer spectrometry to study the magnetic and phase characteristics of Nd–Fe–B-based permanent magnets. First of all, the hyperfine structures of the Ce2Fe14B,(Ce,Nd)2Fe14B and MM2Fe14B phases are well-defined by using the model based on the Wigner-Seitz analysis of the crystal structure. The results show that the isomer shift δ and the quadrupole splitting ?EQ of those 2:14:1 phases show minor changes with the Nd content, while the hyperfine field Bhfincreases monotonically with increasing Nd content and its value is influenced by the element segregation and phase separation in the 2:14:1 phase. Then, the hyperfine structures of the low fraction secondary phases are determined by the 57Fe M?ssbauer spectrometry due to its high sensitivity. On this basis,the content, magnetic behavior, and magnetization of the REFe2 phase, the amorphous grain boundary(GB) phase, and the amorphous worm-like phase, as well as their effects on the magnetic properties, are systematically studied.  相似文献   

8.
The Nd–Fe–B magnets are pre-sintered and then processed with hot-pressing, and the resulting magnets are called the hot-pressed pretreated(HPP) magnets. The coercivity of the HPP magnets increases as the annealed temperature increases.When the annealing temperature is 900℃, the coercivity of the magnet is only 17.6 kOe(1Oe = 79.5775 A·m~(-1)), but when the annealing temperature rises up to 1060℃, the coercivity of the magnet reaches 23.53 k Oe, which is remarkably increased by 33.7%. The microstructure analysis indicates that the grain surface of the HPP magnet becomes smoother as the annealed temperature increases. The microstructure factor α is changed according to the intrinsic coercivity model formula. The α of the magnet at 900℃ is only 0.578, but it is 0.825 at 1060℃. Microstructural optimization is due mainly to the increase of coercivity of the HPP magnet.  相似文献   

9.
The effects of oxidation of Dy H3 with respect to dysprosium addition to Nd–Fe–B sintered magnets are examined.Samples sintered with the addition of freshly milled dysprosium hydride, dysprosium hydride exposed to air at room temperature for 15 min and dysprosium hydride exposed to air at 100°C for 3.5 hours are studied from the aspects of magnetic properties, microstructures, and their degradation, respectively. It is found that some oxidized dysprosium is distributed in the Nd-rich phase; hence, the decrease of remanence occurred. The degradation results indicate that preoxidised dysprosium can be a major factor in increasing the corrosion rate. The microstructures and corrosion acceleration test suggested that the oxidation is detrimental to remanence.  相似文献   

10.
The effect of the Y spacer layer on the phase composition, coercivity, and magnetization reversal processes of La–Nd–Fe–B films has been investigated. The addition of a 10 nm Y spacer layer increases the coercivity of the film to 1.36 T at 300 K and remains 0.938 T at 380 K. As the thickness of the Y spacer layer increases, Y participates in the formation of the main phase in the film, and further regulates the formation of La–B phases. The results of the first-order reversal curve(FORC) and mic...  相似文献   

11.
Significant efforts have been put into the recycling of bulk Nd–Fe–B sintered magnet wastes around the world in the past decade because bulk Nd–Fe–B sintered magnet wastes are valuable secondary rare-earth resources.There are two major facts behind the efforts.First, the waste magnets contain total rare-earth content as high as more than 30 wt.%, which is higher than most natural rare-earth mines.Second, the waste magnets maintain the physical and chemical properties of the original magnets even with deterioration of the properties on surfaces due to corrosion and contamination.In this review,various techniques for recycling bulk Nd–Fe–B sintered magnet wastes, the overall properties of the recycled Nd–Fe–B sintered magnets, and the mass production of recycled magnets from the wastes are reviewed.  相似文献   

12.
The 2:14:1-type rare-earth(RE)-Fe-B permanent magnets prepared by the dual alloy method have been found to possess much superior magnetic properties to those prepared by the single alloy method,providing an appealing route to promote the utilization of high-abundance RE elements Ce and La and balance the use of the RE source.However,the relationship between magnetic interactions among different 2:14:1 main phases and superior magnetic properties is still unclear.In this study,we investigated the magnetic interactions and reversal field distribution in these magnets using first-order reversal curve(FORC)images.The FORC images showed that(Nd,Pr)27.8(La,Ce)2.7FebalM1.4B1.0(S-9)and(Nd,Pr)19.5(La,Ce)11.0FebalM1.4B1.0(S-36)have the characteristics of multiple main phases.The reverse magnetic fields corresponding to the soft and hard main phases,as well as the associated exchange coupling,were highly dependent on the La Ce content.The higher the La Ce content,the weaker the exchange coupling and the more asynchronous the demagnetization process.In addition,the FORC images indicated that the magnetization reversal process also varies with La Ce content,where the nucleation and propagation of reversed domains dominant in the S-9 magnet,while the domain propagation in the S-36 magnet is considerably suppressed.Additional micromagnetic simulations also revealed that the coercivity and exchange coupling of multi-main-phase magnets decrease with increasing La Ce content,correlating well with the experimental results.These findings may not only contribute to a better understanding of the complex magnetic interactions between the soft and hard phases and how they affect macroscopic magnetic properties but also help in improving the magnetic performance of the RE-Fe-B magnets with high La Ce content.  相似文献   

13.
To increase coercivity and thermal stability of sintered Nd–Fe–B magnets for high-temperature applications, a novel terbium sulfide powder is added into(Pr_(0.25)Nd_(0.75))_(30.6)Cu_(0.15)Fe_(bal)B_1(wt.%) basic magnets. The effects of the addition of terbium sulfide on magnetic properties, microstructure, and thermal stability of sintered Nd–Fe–B magnets are investigated.The experimental results show that by adding 3 wt.% Tb_2S_3, the coercivity of the magnet is remarkably increased by about 54% without a considerable reduction in remanence and maximum energy product. By means of the electron probe microanalyzer(EPMA) technology, it is observed that Tb is mainly present in the outer region of 2:14:1 matrix grains and forms a well-developed Tb-shell phase, resulting in enhancement of HA, which accounts for the coercivity enhancement.Moreover, compared with Tb_2S_3-free magnets, the reversible temperature coefficients of remanence(α) and coercivity(β) and the irreversible flux loss of magnetic flow(hirr) values of Tb_2S_3-added magnets are improved, indicating that the thermal stability of the magnets is also effectively improved.  相似文献   

14.
刘壮  陈仁杰  李东  闫阿儒 《中国物理 B》2010,19(6):67504-067504
This paper reports that the SmCo 6.8 Zr 0.2 nanocrystalline permanent magnets and SmCo 6.8 Zr 0.2 /α-(Fe,Co) nanocomposite permanent magnets are successfully produced by mechanical alloying and subsequently annealing at 700 C for 10 minutes.The x-ray diffraction results show that the phase structure of SmCo 6.8 Zr 0.2 nanocrystalline permanent magnets is composed of SmCo 7 phase and SmCo 6.8 Zr 0.2 /α-(Fe,Co) nanocomposite permanent magnets is composed of SmCo 7 and α-(Fe,Co) phases.The mechanism of magnetization reversal is mainly controlled by inhomogeneous domain wall pinning in SmCo 6.8 Zr 0.2 and SmCo 6.8 Zr 0.2 /α-(Fe,Co) magnets.The inter-grain exchange interaction at low temperature is investigated,which shows that the inter-grain exchange interaction of SmCo 6.8 Zr 0.2 /α-(Fe,Co) magnets increases greatly by the decrease of the measured temperature.According to Δm irr-H/H cj,Δm rev-H/H cj and χ irr-H/H cj curves at room temperature and 100 K,the changes of irreversible and reversible magnetization behaviours of SmCo 6.8 Zr 0.2 and SmCo 6.8 Zr 0.2 /α-(Fe,Co) magnets with the decreasing temperature are analysed in detail.The magnetic viscosity and the activation volume of SmCo 6.8 Zr 0.2 and SmCo 6.8 Zr 0.2 /α-(Fe,Co) magnets at different temperatures are also studied.  相似文献   

15.
Data-driven technique is a powerful and efficient tool for guiding materials design,which could supply as an alternative to trial-and-error experiments.In order to accelerate composition design for low-cost rare-earth permanent magnets,an approach using composition to estimate coercivity(H_(cj)) and maximum magnetic energy product(BH)_(max) via machine learning has been applied to(PrNd–La–Ce)_2Fe_(14)B melt-spun magnets.A set of machine learning algorithms are employed to build property prediction models,in which the algorithm of Gradient Boosted Regression Trees is the best for predicting both H_(cj) and(BH)_(max),with high accuracies of R~2= 0.88 and 0.89,respectively.Using the best models,predicted datasets of H_(cj) or(BH)max in high-dimensional composition space can be constructed.Exploring these virtual datasets could provide efficient guidance for materials design,and facilitate the composition optimization of 2:14:1 structure melt-spun magnets.Combined with magnets' cost performance,the candidate cost-effective magnets with targeted properties can also be accurately and rapidly identified.Such data analytics,which involves property prediction and composition design,is of great time-saving and economical significance for the development and application of La Ce-containing melt-spun magnets.  相似文献   

16.
周贝贝  李向斌  曹学静  严高林  闫阿儒 《中国物理 B》2016,25(11):117504-117504
To investigate the coercivity,corrosion resistance,and thermal stability of Nd-Fe-B magnets,their properties were investigated at room and high temperature before and after doping with Dy_(80)Ga_(20)(at.%) powder.The coercivity of the magnets increased from the undoped value of 12.72 kOe to a doped value of 21.44 kOe.A micro-structural analysis indicates that a well-developed core-shell structure forms in the magnets doped with Dy_(80)Ga_(20) powder.The improvement in magnetic properties is believed to be related to the refined and uniform matrix grains,continuous grain boundaries,and a hardened(Nd,Dy)_2Fe_(14)B shell surrounding the matrix grains.Additionally,the doped magnets exhibit an obvious improvement in thermal stability.For the magnets with added Dy_(80)Ga_(20) powder,the temperature coefficients of remanence(α) and coercivity(β) increased to-0.106%℃~(-1) and-0.60%℃~(-1) over the range 20-100 ℃,compared to temperature coefficients of-0.117%℃~(-1)(α) and-0.74%℃~(-1)(β) in the regular magnets without Dy_(80)Ga_(20) powder.The irreversible loss of magnetic flux(Hirr) was investigated at different temperatures.After being exposed to 150 ℃ for 2 h,the Hirr of magnets with 4 wt.%Dy_(80)Ga_(20) decreased by ~95%compared to that of the undoped magnets.The enhanced temperature coefficients and Hirr indicate improved thermal stability in the doped Nd-Fe-B magnets.The intergranular addition of Dy_(80)Ga_(20) also improved the corrosion resistance of the magnets because of the enhanced intergranular phase.In a corrosive atmosphere for 96 h,the mass loss of the sintered magnets with 4 wt.%Dy_(80)Ga_(20) was 2.68 mg/cm~2,less than 10%of that suffered by the undoped magnets(28.1 mg/cm~2).  相似文献   

17.
Resource-saving(PrNdCe)_2Fe_(14)B sintered magnets with nominal composition(PrNd)_(15-x)Ce_xFe_(77)B_8(x=0–10)were prepared using a dual alloy method by mixing(PrNd)_5Ce_(10)Fe_(77)B_8 with(PrNd)_(15)Fe_(77)B_8 powders. For Ce atomic percent of 1% and 2%, coercivity decreases dramatically. With further increase of Ce atomic percent, the coercivity increases, peaks at 6.38 kOe in(PrNd)_(11)Ce_4Fe_(77)B_8, and then declines gradually. The abnormal dependence of coercivity is likely related to the inhomogeneity of rare earth chemical composition in the intergranular phase, where Pr Nd concentration is strongly dependent on the additive amount of(PrNd)_5Ce_(10)Fe_(77)B_8 powders. In addition, for Ce atomic percent of 8%,7%, and 6% the coercivity is higher than that of magnets prepared by the conventional method, which shows the advantage of the dual alloy method in preparing high abundant rare earth magnets.  相似文献   

18.
This paper reports that the SmCo6.8Zr0.2 nanocrystalline permanent magnets and SmCo6.8Zr0.2/a-(Fe,Co) nanocomposite permanent magnets are successfully produced by mechanical alloying and subsequently annealing at 700℃ for 10 minutes. The x-ray diffraction results show that the phase structure of SmCo6.8Zr0.2 nanocrystalline permanent magnets is composed of SmCo7 phase and SmCo6.8Zr0.2/a-(Fe,Co) nanocomposite permanent magnets is composed of SmCo7 and a-(Fe,Co) phases. The mechanism of magnetization reversal is mainly controlled by inhomogeneous domain wall pinning in SmCo6.8Zr0.2 and SmCo6.8Zr0.2/a-(Fe,Co) magnets. The inter-grain exchange interaction at low temperature is investigated, which shows that the inter-grain exchange interaction of SmCo6.8Zr0.2/a-(Fe,Co) magnets increases greatly by the decrease of the measured temperature. According to Amirr-H/Hcj, Amrev-H/Hcj and Xirr-H/Hcj curves at room temperature and 100 K, the changes of irreversible and reversible magnetization behaviours of SmCo6.8Zr0.2 and SmCo6.8Zr0.2/a-(Fe,Co) magnets with the decreasing temperature are analysed in detail. The magnetic viscosity and the activation volume of SmCo6.8Zr0.2 and SmCo6.8Zr0.2/a-(Fe,Co) magnets at different temperatures are also studied.  相似文献   

19.
The magnetic microstructures of two Dy-AI substituted sintered Nd-Fe-13 magnets with the different nominal compositions of Nd12.2Vy0.6Fe80.4Al0.7B6 (at.%) (composition-A,C-A) and Nd13.7Dy0.6Fe78.8Al0.7B6.2(at.%)(composition-B,C-13) prepared by strip casting technique have been revealed by using a magnetic force microscope. The magnetic properties of sintered C-B magnets are worse than that of C-A sintered magnets. In particular, the value of density products (BH)max for sintered C-A magnets is about 32% higher than that of C-B magnets, which is reflected by their quite different magnetic microstructures. We believe that for the C-B samples, the inappropriate composition and thus the redundant Nd2Fe17(B) phase of the casting strips make its final magnetic microstructures worse than the C-A, and then deteriorates the performance of the C-B magnets.  相似文献   

20.
The strip casting (SC) technique is employed to fabricate Nd(Fe,Mo)12Nx magnets. The crystallographic structure, intrinsic and permanent magnetic properties, as well as the microstruetures of the compound are investigated. There are prominent advantages for the SC Nd-Fe-Mo ailoys and their nitrides when compared with the samples prepared by the conventional casting (CC) method: (1) SC technique rebounds to the formation of the compounds crystallizing in a ThMn12-type structure. A single-phased host alloy Nd(Fe,Mo)12 can be directly prepared by strip casting without any isothermal annealing. Accordingly, lower energy cost and less rare earth demand notablely benefit the manufacture processing from a point of economizing. (2) The intrinsic magnetic properties, such as Curie temperature To, saturation magnetization Ms and anisotropy field Ha of the SC sample exceed the CC sample due to a phase forming condition with less-Mo-depended. (3) The microstructure studies also demonstrate that the SC compound contains finer grains, better-proportioned phase distribution than the CC compound. Optimized finM particles are observed aligned in their easy axis and the energy product of powder sample is up to (BH)max - 22 MGOe (176 kJ/m3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号