首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A coherent nonlinear coupling between the charge and spin dynamics of electrons results in the rectification of microwaves,which is enhanced through resonant magnetization dynamics such as ferromagnetic resonance.This property,known as the spin rectification effect,enables the spin dynamics within a material to be electrically detected with a high sensitivity.Techniques utilizing this property have been widely used to study the magnetization dynamics of various ferromagnetic materials and structures in the past decade.Additionally,the coherent nature of spin rectification opens the door for spintronic devices to be used in phase-resolved microwave sensing techniques.In this work we review the physics of spin rectification and its applications in several interesting topics of magnetism and spintronics.  相似文献   

2.
In this article, we review the recent progress in growth, structural characterizations, magnetic properties, and related spintronic devices of tetragonal MnxGa and MnxA1 thin films with perpendicular magnetic anisotropy. First, we present a brief introduction to the demands for perpendicularly magnetized materials in spintronics, magnetic recording, and perma- nent magnets applications, and the most promising candidates of tetragonal MnxGa and MnxA1 with strong perpendicular magnetic anisotropy. Then, we focus on the recent progress of perpendicularly magnetized MnxGa and MnxA1 respec- tively, including their lattice structures, bulk synthesis, epitaxial growth, structural characterizations, magnetic and other spin-dependent properties, and spintronic devices like magnetic tunneling junctions, spin valves, and spin injectors into semiconductors. Finally, we give a summary and a perspective of these perpendicularly magnetized Mn-based binary alloy films for future applications.  相似文献   

3.
We report a theoretic study on modulating the spin polarization of charge current in a mesoscopic fourterminal device of cross structure by using the inverse spin hall effect. The scattering region of device is a two-dimensional electron gas (2DEG) with Rashba spin orbital interaction (RSOI), one of lead is ferromagnetic metal and other three leads are spin-degenerate normal metals. By using Landauer-Biittiker formalism, we found that when a longitudinal charge current flows through 2DEG scattering region from FM lead by external bias, the transverse current can be either a pure spin current or full-polarized charge current due to the combined effect of spin hall effect and its inverse process, and the polarization of this transverse current can be easily controlled by several device parameters such as the Fermi energy, ferromagnetic magnetization, and the RSOI constant. Our method may pave a new way to control the spin polarization of a charge current.  相似文献   

4.
Magnetization manipulation by an electric field(E-field) in ferromagnetic/ferroelectric heterostructures has attracted increasing attention because of the potential applications in novel magnetoelectric devices and spintronic devices, due to the ultra-low power consumption of the process. In this review, we summarize the recent progress in E-field controlled magnetism in ferromagnetic/ferroelectric heterostructures with an emphasis on strain-mediated converse magnetoelectric coupling. Firstly, we briefly review the history, the underlying theory of the magnetoelectric coupling mechanism, and the current status of research. Secondly, we illustrate the competitive energy relationship and volatile magnetization switching under an E-field. We then discuss E-field modified ferroelastic domain states and recent progress in non-volatile manipulation of magnetic properties. Finally, we present the pure E-field controlled 180° in-plane magnetization reversal and both E-field and current modified 180° perpendicular magnetization reversal.  相似文献   

5.
Electrical spin, which is the key element of spintronics, has been regarded as a powerful substitute for the electrical charge in the next generation of information technology, in which spin plays the role of the carrier of information and/or energy in a similar way to the electrical charge in electronics. Spin-transport phenomena in different materials are central topics of spintronics. Unlike electrical charge, spin transport does not depend on electron motion, particularly spin can be transported in insulators without accompanying Joule heating. Therefore, insulators are considered to be ideal materials for spin conductors, in which magnetic insulators are the most compelling systems. Recently, we experimentally studied and theoretically discussed spin transport in various antiferromagnetic systems and identified spin susceptibility and the Néel vector as the most important factors for spin transport in antiferromagnetic systems. Herein, we summarize our experimental results, physical nature, and puzzles unknown. Further challenges and potential applications are also discussed.  相似文献   

6.
Using the perturbation method,we theoretically study the spin current and its heat effect in a multichannel quantum wire with Rashba spin-orbit coupling.The heat generated by the spin current is calculated.With the increase of the width of the quantum wire,the spin current and the heat generated both exhibit period oscillations with equal amplitudes.When the quantum-channel number is doubled,the oscillation periods of the spin current and of the heat generated both decrease by a factor of 2.For the spin current j s,xy,the amplitude increases with the decrease of the quantum channel;while the amplitude of the spin current j s,yx remains the same.Therefore we conclude that the effect of the quantum-channel number on the spin current j s,xy is greater than that on the spin current j s,yx.The strength of the Rashba spin-orbit coupling is tunable by the gate voltage,and the gate voltage can be varied experimentally,which implies a new method of detecting the spin current.In addition,we can control the amplitude and the oscillation period of the spin current by controlling the number of the quantum channels.All these characteristics of the spin current will be very important for detecting and controlling the spin current,and especially for designing new spintronic devices in the future.  相似文献   

7.
We report a theoretic study on the inverse spin-Hall effect (ISHE) in a two-terminal nano-device that consists of a two-dimensional electron gas (2DEG) with Rashba spin-orbit coupling (RSOC) and two ideal leads. Based on a two-site toy model and Keldysh Green's function method, we derive an analytic result of ISHE, which shows clearly that a nonzero transverse charge current stems from the combined effect of the RSOC, the spin bias, and its spin polarization direction in spin space. Our further numerical calculations in a larger system other than two-site lattice model demonstrate that the transverse charge current, dependent on the strength of the RSOC, the Fermi energy of the system, as well as the system size, can exhibit oscillating behavior and even reverse its sign due to Rashba spin precession. These properties may be helpful for eficient detection of the spin current (spin bias) by measuring the transverse charge current in a spin-orbital coupling system.  相似文献   

8.
Manipulation of spin states via purely electric means forms the research branch "all-electric spintronics".In this paper,we briefly review recent progress relating to the all-electric spintronics,including electric-field control of Rashba spin-orbit coupling,magnetic anisotropy,exchange bias,ferromagnetism,and other forms of magnetoelectric coupling.Special focus is given to surface/interface systems,including semiconductor(oxide) heterostructures,magnetic/nonmagnetic surfaces,semiconductor-metal interfaces,and other nanostructures,which can be good candidates for functional materials for spintronic.  相似文献   

9.
We investigate persistent charge and spin currents of a one-dimensional ring with Rashba spin-orbit coupling and connected asymmetrically to two external leads spanned with angle φo. Because of the asymmetry of the structure and the spin-reflection, the persistent charge and spin currents can be induced. The magnification of persistent currents can be obtained when tuning the energy of incident electron to the sharp zero and sharp resonance of transmission depending on the Aharonov-Casher (AC) phase due to the spin-orbit coupling and the angle spanned by two leads φo. The general dependence of the charge and spin persistent currents on these parameters is obtained. This suggests a possible method of controlling the magnitude and direction of persistent currents by tuning the AC phase and φo, without the electromagnetic flux though the ring.  相似文献   

10.
The realization of a perfect spin or valley filtering effect in two-dimensional graphene-like materials is one of the fundamental objectives in spintronics and valleytronics. For this purpose, we study spin- and valley-dependent transport in a silicene system with spatially alternative strains. It is found that due to the valley-opposite gauge field induced by the strain, the strained silicene with a superlattice structure exhibits an angle-resolved valley and spin filtering effect when the spin–orbit interaction is considered. When the interaction that breaks the time reversal symmetry is introduced, such as the spin or valley dependent staggered magnetization, the system is shown to be a perfect spin and valley half metal in which only one spin and valley species is allowed to transport. Our findings are helpful to design both spintronic and valleytronic devices based on silicene.  相似文献   

11.
Carbon-based spintronics refers mainly to the spin injection and transport in carbon materials including carbon nanotubes,graphene,fullerene,and organic materials.In the last decade,extraordinary development has been achieved for carbon-based spintronics,and the spin transport has been studied in both local and nonlocal spin valve devices.A series of theoretical and experimental studies have been done to reveal the spin relaxation mechanisms and spin transport properties in carbon materials,mostly for graphene and carbon nanotubes.In this article,we provide a brief review on spin injection and transport in graphene,carbon nanotubes,fullerene and organic thin films.  相似文献   

12.
We study theoretically the heat originated from electron–phonon coupling in a spintronic device composed of a semiconductor quantum dot attached to one spin battery and one ferromagnetic lead. It is found that the phenomenon of the negative differential of the heat current, which has previously been predicted in the charge-based device, disappears due to the Pauli exclusion principle resulted from the presence of the spin battery. Under some conditions, huge heat in the heat generation induced by resonant phonon emitting processes also disappears in this spin-based device. Furthermore, we find that the ferromagnetism of the lead can be used to effectively adjust the magnitude of the heat current in different dot level ranges. The proposed system is realizable by current technology and may be useful in designing high-efficiency spintronic components.  相似文献   

13.
迟锋  李树深 《中国物理快报》2005,22(8):2035-2038
We investigate the spin polarized current through a quantum dot connected to ferromagnetic leads in the presence of a finite spin-dependent chemical potential. The effects of the spin polarization of the leads p and the external magnetic field B are studied. It is found that both the magnitude and the symmetry of the current are dependent on the spin polarization of the leads. When the two ferromagnetic leads are in parallel configuration, the spin polarization p has an insignificant effect on the spin current, and an accompanying charge current appears with the increase of p. When the leads are in antiparallel configuration, however, the effect of p is distinct. The charge current is always zero regardless of the variation of p in the absence of B. The peaks appearing in the pure spin current are greatly suppressed and become asymmetric as p is increased. The applied magnetic field B results in an accompanying charge current in both the parallel and antiparallel configurations of the leads. The characteristics of the currents are explained in terms of the density of states of the quantum dot.  相似文献   

14.
The adiabatic electron transport is theoretically studied in a zigzag graphene nanoribbon(ZGNR) junction with two time-dependent pumping electric fields. By modeling a ZGNR p–n junction and applying the Keldysh Green's function method, we find that a pumped charge current is flowing in the device at a zero external bias, which mainly comes from the photon-assisted tunneling process and the valley selection rule in an even-chain ZGNR junction. The pumped charge current and its ON and OFF states can be efficiently modulated by changing the system parameters such as the pumping frequency, the pumping phase difference, and the Fermi level. A ferromagnetic ZGNR device is also studied to generate a pure spin current and a fully polarized spin current due to the combined spin pump effect and the valley valve effect. Our finding might pave the way to manipulate the degree of freedom of electrons in a graphene-based electronic device.  相似文献   

15.
We investigate theoretically the spin current in a quantum wire with weak Dresselhaus spin-orbit coupling connected to two normal conductors. Both the quantum wire and conductors are described by a hard-wall confining potential. Using the electron wave-functions in the quantum wire and a new definition of spin current, we have calculated the elements of linear spin current density j^Ts,xi and j^Ts,yi(i=x, y, z). We find that the elements j^Ts,xx and j^Ts,yy have a antisymmetrical relation and the element j^Ts,yz has the same amount levelas j^Ts,xx and j^Ts,yy. We also find a net linear spin current density, which has peaks at the center of quantum wire. The net linear spin current can induce a linear electric field, which may imply a way of spin current detection.  相似文献   

16.
We study the pumped spin current of an interacting quantum dot tunnel coupled to a single lead in the presence of electron spin resonance (ESR) field. The spin decoherence in the dot is included by the Bffttiker approach. Using the nonequilibrium Green's function technique, we show that ESR-induced spin flip can generate finite spin current with no charge transport. Both the Coulomb interaction and spin decoherence decrease the amplitude of spin current. The dependence of pumped spin current on the intensity and frequency of ESR field, and the spin decoherence is discussed.  相似文献   

17.
Organic spintronics refers to control spin dependent transport through organic materials.In the last two decades,extraordinary development has been achieved for organic-spintronics.A series of theoretical and experimental studies have been done to reveal the mechanisms of spin dependent transport properties.The theoretical analysis is based on the non-equilibrium Green’s function formalism provides a mathematical framework for solving the transmission coefficients in the Landauer formula from atomistic first principles without any phenomenological parameters.In this article,we provide a brief theoretical review on organic spintronics devices and device physics therein.  相似文献   

18.
We investigate bias and different barrier thicknesses effects on quantities related to spin and charge currents in MgO-based magnetic tunnel junctions. Using the non-Equilibrium Green's function formalism, we demonstrate that the in-plane and out-of-plane components of the spin-transfer torque have asymmetric and symmetric behaviors respectively. Magneto-resistance also decreases with increasing barrier thickness. The Landau–Lifshits–Gilbert equation describes the dynamics of the magnetization made by spin transfer torque. Increasing in spin current above its critical value or smaller the magnet reduces the switching time which is major result for making of new memory devices.  相似文献   

19.
For a quantum system with multiple degrees of freedom or subspaces, loss of coherence in a certain subspace is intimately related to the enhancement of entanglement between this subspace and another one. We investigate intra-particle entanglement in two-dimensional mesoscopic systems, where an electron has both spin and orbital degrees of freedom and the interaction between them is enabled by Rashba type of spin–orbit coupling. The geometric shape of the scattering region can be adjusted to produce a continuous spectrum of classical dynamics with different degree of chaos. Focusing on the spin degree of freedom in the weak spin–orbit coupling regime, we find that classical chaos can significantly enhance spin–orbit entanglement at the expense of spin coherence. Our finding that classical chaos can be beneficial to intra-particle entanglement may have potential applications such as enhancing the bandwidth of quantum communications.  相似文献   

20.
刘根华  周光辉 《中国物理快报》2005,22(12):3159-3162
We theoretically study the low temperature electron transport properties of a weak Rashba spin-orbit coupling (SOC) semiconductor quantum wire connected nonadiabatically to two electrode leads without SOC. The wire and the leads are defined by a parabolic confining potential, and the influence of both the wire-lead connection and the Rashba SOC on the electron transport is treated analytically by means of scattering matrix within effective free-electron approximation. From analytical analysis and numerical examples, we find that the system shows some fractional quantum conductance behaviour, and for some particular wire width a pure spin polarized current exists. Our result may imply a simple method for the design of a spin filter without involving any magnetic materials or magnetic fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号