首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this study, the electrical, dielectric and morphological analysis of composite solid polymer electrolytes containing polyethylene oxide, alumina nano-fillers and tetrapropylammonium iodide are conducted. The temperature dependence of conductivity shows activation energy of 0.23, 0.20 and 0.29 eV for electrolytes containing 0, 5 and 15 wt.% alumina, respectively, when data fitted to the Arrhenius equation. These activation energy values are in good agreement with those determined from dielectric measurements. The result confirms the fact that conductivity is activated by both the mobility and the charge carrier density. The conductivity isotherms demonstrated the existence of two peaks, at 5 and 15 wt.% Al2O3 composition. The highest conductivity values of 2.4 × 10?4, 3.3 × 10?4 and 4.2 × 10?4 S cm?1 are obtained for the sample with 5 wt.% Al2O3 at 0, 12 and 24 °C, respectively, suggesting an enhancement of conductivity compared with that of alumina free samples.  相似文献   

2.
Abstract

The radiation enhanced diffusion (coefficient D*) of U-233 and Pu-238 in UO2 and (U, Pu)O2 with 2.5 and 15% Pu was measured during fission in a nuclear reactor. Normal diffusion sandwiches with a thin tracer layer were used. A radio-frequency furnace allowed the temperatures to be varied between 130 and 1400°. Neutron fluxes (7 × 1012 to 1.2 × 1014 n cm?2 s?1) and irradiation times (56 to 334 h) were also varied to cover ranges of fission rates [Fdot] between 7× 1011 and 6.4 × 1013 f cm?3 s?1 and of doses F between 4.2 × 1017 and 3.1 × 1019 f cm3. Below ~1000°, D* was completely athermal and increased linearly with [Fdot]. It was described by D* = A[Fdot] with A = 1.2× 10?29cm5. A possible temperature dependence was indicated between ~1000and 1200°. The results are explained in terms of thermal and pressure effects of fission spikes and are related with other studies of radiation damage as well as with technologically interesting processes occurring in UO2 during irradiation.  相似文献   

3.
GaP(001) cleaned by argon-ion bombardment and annealed at 500°C showed the Ga-stabilized GaP(001)(4 × 2) structure. Only treatment in 10?5 Torr PH3 at 500°C gave the P-stabilized GaP(001)(1 × 2) structure. The AES peak ratio PGa is 2 for the (4 × 2) and 3.5 for the (1 × 2) structure. Cs adsorbs with a sticking probability of unity up to 5 × 1014 Cs atoms cm?2 and a lower one at higher coverages. The photoemission measured with uv light of 3660 Å showed a maximum at the coverage of 5 × 1014 atoms cm?2. Cs adsorbs amorphously at room temperature, but heat treatment gives ordered structures, which are thought to be reconstructed GaP(001) structures induced by Cs. The LEED patterns showed the GaP(001)(1 × 2) Cs structure formed at 180°C for 10 h with a Cs coverage of 5 × 1014 atoms cm?2, the GaP(001)(1 × 4) Cs formed at 210°C for 10 hours with a Cs coverage of 2.7 × 1014 atoms cm?2, the GaP(001)(7 × 1) and the high temperature GaP(001)(1 × 4), the latter two with very low Cs content. Desorption measurements show three stability regions: (a) between 25–150°C for coverages greater than 5 × 1014 atoms cm?2, and an activation energy of 1.2 eV; (b) between 180–200°C with a coverage of 5 × 1014 atoms cm?2, and an activation energy of 1.8 eV; (c) between 210–400°C with a coverage of 2.7 × 1014 atoms cm?2, and an activation energy of 2.5 eV.  相似文献   

4.
Abstract

The electronic transport properties of Dirac fermions in chemical vapour-deposited single-layer epitaxial graphene on anSiO2/Si substrate have been investigated using the Shubnikov–de Haas (SdH) oscillations technique. The magnetoresistance measurements were performed in the temperature range between 1.8 and 43 K and at magnetic fields up to 11 T. The 2D carrier density and the Fermi energy have been determined from the period of the SdH oscillations. In addition, the in-plane effective mass as well as the quantum lifetime of 2D carriers have been calculated from the temperature and magnetic field dependences of the SdH oscillation amplitude. The sheet carrier density (1.42 × 1013 cm?2 at 1.8 K), obtained from the low-field Hall Effect measurements, is larger than that of 2D carrier density (8.13 × 1012 cm?2). On the other hand, the magnetoresistance includes strong magnetic field dependent positive, non-oscillatory background magnetoresistance. The strong magnetic field dependence of the magnetoresistance and the differences between sheet carrier and 2D carrier density can be attributed to the 3D carriers between the graphene sheet and the SiO2/Si substrate.  相似文献   

5.
Abstract

The energy dependence of low dose damage production in commercial and high purity polycrystalline tungsten wires was studied near 350 K with 1.6 to 2.4 MeV electrons. From resistivity measurements at 291 K the threshold energy for the onset of observable damage was determined as 50 × 2 eV. An ‘effective’ threshold of 52 ±2 eV was also determined by directly fitting the energy dependence of the damage rates to theoretical displacement cross sections calculated from step-function displacement probabilities. A decrease of two orders of magnitude in impurity content reduced damage rates by about a factor of two but did not affect threshold. These results combined with current defect recovery models for tungsten, low temperature threshold data, and computer-calculated bcc damage theory suggest: (1) Observed damage consisted of equal concentrations of vacancies and impurity-trapped Stage I free interstitials. (2) Across Stage II (100 K to 600 K) onset threshold should be within 50 ±2 eV. (3) Minimum recoil energy required for free interstitial production near 0 K is 53 ± 5 eV. (4) Threshold has little dependence on crystal direction. An empirical method is presented for predicting threshold energies in the bcc transition metals by assuming the directional dependence of threshold is directly proportional to that of Young's modulus. By the use of one universal proportionality constant (1.2 × 10?11 eV.cm2/dyne), thresholds for a number of metals and directions are calculated and shown to have significantly better agreement with experiment than the best available theoretical estimates.  相似文献   

6.
Electrical conductivities of thin crystals of Bi2(Te,S)3 measured from 4.2°K to 300°K fall into four regions: 1) σ < 1.3×10?5 S with positive temperature coefficient of conductivity; 2) 1.3×10?5 S < σ < 1.4×10?5 S with temperature independent conductivity; 3) 1.4×10?5 S σ < 4×10?5 S with negative temperature coefficient of conductivity, and 4) σ > 4×10?5 S with hardly any temperature dependence. A disproportionately high fraction of samples falls into the second range; 1.3×10?5 S < σ < 1.4×10?5 S.  相似文献   

7.
ABSTRACT

Tungsten (W) has been regarded as one of the most promising plasma facing materials (PFMs) in fusion reactors. The formation of bubbles and blisters during hydrogen (H) irradiation will affect the properties of W. The dependence of implantation conditions, such as fluence and energy, is therefore of great interest. In this work, polycrystalline tungsten samples were separated into two groups for study. The thick samples were implanted by 18?keV H3+ ions to fluences of 1?×?1018, 1?×?1019 and 1?×?1020 H+/cm2, respectively. Another thick sample was also implanted by 80?keV H2+ ions to a fluence of 2?×?1017 H+/cm2 for comparison. Moreover, the thin samples were implanted by 18?keV H3+ ions to fluences of 9.38?×?1016, 1.88?×?1017 and 5.63?×?1017 H+/cm2, respectively. Focused ion beam (FIB) combined with scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used for micro-structure analysis, while time-of-flight ion mass spectrometry (ToF-SIMS) was used to characterize the H depth profile. It is indicated that bubbles and blisters could form successively with increasing H+ fluence. H bubbles are formed at a fluence of ~5.63?×?1017 H+/cm2, and H blisters are formed at ~1?×?1019 H+/cm2 for 18?keV H3+ implantation. On the other hand, 80?keV H2+ ions can create more trapping sites in a shallow projected range, and thus enhancing the blisters formation with a relatively lower fluence of 2?×?1017?H+/cm2. The crack-like microstructures beneath the blisters are also observed and prefer to form on the deep side of the implanted range.  相似文献   

8.
ABSTRACT

We report total electron-impact ionisation cross sections (EICSs) of cisplatin, its hydrolysis products and transplatin in the energy range from threshold to 10?keV using the binary-encounter-Bethe (BEB) and its relativistic variant (RBEB), and the Deutsch-Märk (DM) methods. We find reasonable agreement between all three methods, and we also note that the RBEB and the BEB methods yield very similar (almost identical) results in the considered energy range. For cisplatin, the resulting EICSs yield cross section maxima of 22.09?×?10?20?m2 at 55.4?eV for the DM method and 18.67?×?10?20?m2 at 79.2?eV for the (R)BEB method(s). The EICSs of monoaquated cisplatin yield maxima of 12.54?×?10?20?m2 at 82.8?eV for the DM method and of 9.74?×?10?20?m2 at 106?eV for the (R)BEB method(s), diaquated cisplatin yields maxima of 7.56?×?10?20?m2 at 118.5?eV for the DM method and of 5.77?×?10?20?m2 at 136?eV for the (R)BEB method(s). Molecular geometry does not affect the resulting EICS significantly, which is also reflected in very similar EICSs of the cis- and trans-isomer. Limitations of the work as well as desirable future directions in the research area are discussed.  相似文献   

9.
The thermal expansivity and mean-square thermal vibrational amplitudes were determined as a function of temperature for thorium from first principles total energy calculations using the full potential linearized augmented plane wave (FP-LAPW) method. The coefficient of thermal expansion determined from variation of theoretical potential energy with interatomic separation is ~1.427 × 10?5 K?1 as compared to an experimental value of 1.23 × 10?5 K?1. The mean-square thermal vibrational amplitudes determined as a function of temperature from the theoretically calculated volume-dependent Debye temperature agree well with experimental data derived form neutron diffraction measurements. The melting temperature of thorium, determined theoretically from the mean-square thermal vibrations and the Lindemann rule for melting, is 2234 K, as compared to the reported experimental value of 2021 K.  相似文献   

10.
Mass spectrometric measurements of photodesorption from powdered ZnO under controlled radiation are reported. Neutral carbon dioxide and atomic oxygen prevail as the desorbing species. From photodesorption rate decay curves we obtain cross sections for photodesorption of ~ 2 × 10?17 cm2 for O and ~4 × 10?19 cm2 for CO2. Both species desorb only when the incoming photon energy exceeds the ZnO band gap energy (3.2 eV). The desorption rate is linear with incoming photon flux. All the data seem to support a substrate dependent process of photodesorption by neutralization of chemisorbed species by photogenerated holes. The temperature dependence of the photodesorption rate for CO2 yields a value of 0.26 eV for the apparent binding energy of the physisorbed CO2 molecule.  相似文献   

11.
We have examined the effect of high temperature on single-wall carbon nanotubes under air and nitrogen ambient by Raman spectroscopy. We observe the temperature dependence of the radial breathing mode and the G-band modes. The thermal expansion coefficient (β) of the bundled nanotubes is obtained experimentally using the estimated volume from Raman scattering. β behaves linearly with temperature from 0.33 × 10?5 K?1 to 0.28 × 10?5 K?1 in air and from 0.58 × 10?5 K?1 to 0.47 × 10?5 K?1 in nitrogen ambient, respectively. The temperature dependence of the radial breathing mode Raman frequencies is consistent with a pure temperature effect.  相似文献   

12.
Probe measurements of the electron energy distribution in He + O2 mixture discharge are compared with the results obtained using the Holstein form of the Boltzmann equation. The transport and Townsend coefficients are calculated and in case of pure helium and oxygen they are verified by available experiments. The results are presented for dc discharge over the range 0 to 30% of oxygen admixture in helium and 5×10?17E/N≦2×10?15 V cm2.  相似文献   

13.
The dielectric susceptibility of a helix-free ferroelectric liquid crystal layer has been experimentally and theoretically studied as a function of the layer thickness. The investigation has been performed on the inner branch of the polarization hysteresis loop, in the region of a linear dependence of the polarization on the electric field. The experimental results are explained using the notion of effective layer thickness, which involves the characteristic distance ?? over which the orienting effect of interfaces is operative. Comparison of the experimental data and theoretical results made it possible to estimate this distance as ?? = 41 ??m and evaluate the anchoring energy (W = 2.8 × 10?3?1.1 × 10?2 J/m2) and the intralayer elastic constant (K?? ?? 1 × 10?8?3 × 10?7 N).  相似文献   

14.
A series of transition metal complexes of Co(II), Ni(II), Zn(II), Fe(III) and VO(IV) have been synthesized involving the Schiff base, 2,3-dimethyl-1-phenyl-4-(2-hydroxy-3-methoxy benzylideneamino)-pyrazol-5-one(L), obtained by condensation of 4-aminoantipyrine with 3-methoxy salicylaldehyde. Structural features were obtained from their FT-IR, UV–vis, NMR, ESI Mass, elemental analysis, magnetic moments, molar conductivity and thermal analysis studies. The Schiff base acts as a monovalent bidentate ligand, coordinating through the azomethine nitrogen and phenolic oxygen atom. Based on elemental and spectral studies six coordinated geometry is assigned to Co(II), Ni(II), Fe(III) and VO(IV) complexes and four coordinated geometry is assigned to Zn(II) complex. The interaction of metal complexes with Calf thymus DNA were carried out by UV–VIS titrations, fluorescence spectroscopy and viscosity measurements. The binding constants (Kb) of the complexes were determined as 5?×?105 M?1 for Co(II) complex, 1.33?×?104 M?1 for Ni(II) complex, 3.33?×?105 M?1 for Zn(II) complex, 1.25?×?105 M?1 for Fe(III) complex and 8?×?105 M?1 for VO(IV) complex. Quenching studies of the complexes indicate that these complexes strongly bind to DNA. Viscosity measurements indicate the binding mode of complexes with CT DNA by intercalation through groove. The ligand and it’s metal complexes were screened for their antimicrobial activity against bacteria. The results showed the metal complexes to be biologically active, while the ligand to be inactive.  相似文献   

15.
The formation period time, current rise time, and photon energy of FXR discharges have been investigated at initial pressures of 5×10?6 to 1×10?2Torr. It has been found that the parameters studied are almost constant between 5×10?6 and 1×10?3Torr. The results obtained indicate that the upper limit of the interelectrode breakdown pressure is about 10?3 Torr when the initial pressure is 10?6 Torr.  相似文献   

16.
Abstract

Continuous, incoherent light from a xenon arc lamp has been used to anneal radiation damage in <100> silicon single crystals produced by implantation of 30?keV arsenic or antimony ions to doses between 1×1015 cm?2 and 1×1016 cm?2. The recrystallized layers have been characterized by Rutherford-backscattering spectroscopy, ion-channeling, Transmission Electron Microscopy, and sheet-resistivity measurements.  相似文献   

17.
The thickness distribution and structure of ZnO films deposited by DC-magnetron sputtering of a zinc target in argon-oxygen gaseous medium at substrate temperature of 27°C and gas pressure in the chamber within 5×10?3 ? 5×10?2 mm Hg was investigated. It was revealed that the use of a target with a certain depression in the sputtering zone allows depositing high quality c-oriented films at lower gas pressure than with a flat target. The dependence of film quality on geometric factors is interpreted on the basis of theoretical computations with the assumption that the film structure is improved when the flux of deposited Zn particles decreases while their energy increases.  相似文献   

18.
Previously we have reported the existence of small-amplitude charge pulses in crosslinked Polyethylene (XLPE) and epoxy resin with a mobility several orders of magnitude higher than that found for the incoherent charge transport relevant to the steady state current. Here the relationship of this phenomenon to mechanical relaxation in the material is investigated by using a series of epoxy resin nanocomposites based on a resin that has its flexibility increased above that of the fully cured glassy epoxy network by the addition of a suitable flexibilizing chemical. Differential Scanning Calorimetry (DSC) measurements show that the stiffness of the nanocomposite is progressively increased as the nanoparticle concentration increases. Pulsed Electro-Acoustic (PEA) measurements reveal that both positive and negative fast charge pulses exist in the unfilled epoxy at 45 and 70°C under a field of 10?kV/mm with mobility 5×10?10 to 9×10?10 m2?V?1?s?1, amplitude between 2×10?5 and 3.6×10?5 C?m?2 and repetition rates between 8 and 12?s?1. These values are reduced progressively as the nanoparticle concentration is increased from 0% in the unfilled epoxy. A???-mode mechanical relaxation is identified in the loss modulus by Dynamical Mechanical Analysis (DMA), whose activation energy moves to higher values with increasing nanoparticle concentration. It is shown that the repetition rates of both positive and negative pulses have similar values and are correlated with the ??-mode activation energy; a similar correlation is found for the activation energy of the mobility of positive pulses. The correlation of the activation energy of the mobility of negative pulses and that of the ??-mode is weaker although both show a progressive increase with nanoparticle concentration. The modification of the fast charge pulse properties by the mechanical stiffness of the epoxy nanocomposite is discussed in terms of the theory presented previously for their formation and transport.  相似文献   

19.
本文使用OH激光诱导荧光方法研究了结构最简单的克里奇中间体CH2OO和CF3CF=CF2的反应动力学. 在压强为10 Torr条件下,测量了温度在283,298,308和318 K的反应速率常数,分别为(1.45±0.14)×10-13,(1.18±0.11)×10-13,(1.11±0.08)×10-13和(1.04±0.08)×10-13 cm3·molecule-1·s-1. 根据阿伦尼乌斯方程,获得该反应的活化能为(-1.66±0.21) kcal/mol. 在6.3∽70 torr压力范围内,未观察到该反应的速率常数存在压力相关.  相似文献   

20.
A. K. Nath  A. Kumar 《Ionics》2014,20(12):1711-1721
Swift heavy ion (SHI) irradiation has been used as a tool to enhance the electrochemical properties of ionic liquid-based nanocomposite polymer electrolytes dispersed with dedoped polyaniline (PAni) nanorods; 100 MeV Si9+ ions with four different fluences of 5?×?1010, 1?×?1011, 5?×?1011, and 1?×?1012 ions cm?2 have been used as SHI. XRD results depict that with increasing ion fluence, crystallinity decreases due to chain scission up to fluence of 5?×?1011 ions cm?2, and at higher fluence, crystallinity increases due to cross-linking of polymer chains. Ionic conductivity, electrochemical stability, and dielectric properties are enhanced with increasing ion fluence attaining maximum value at the fluence of 5?×?1011 ions cm?2 and subsequently decrease. Optimum ionic conductivity of 1.5?×?10?2 S cm?1 and electrochemical stability up to 6.3 V have been obtained at the fluence of 5?×?1011 ions cm?2. Ac conductivity studies show that ion conduction takes place through hopping of ions from one coordination site to the other. On SHI irradiation, amorphicity of the polymer matrix increases resulting in increased segmental motion which facilitates ion hopping leading to an increase in ionic conductivity. Thermogravimetric analysis (TGA) measurements show that SHI-irradiated nanocomposite polymer electrolytes are thermally stable up to 240–260 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号