首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为提高AlGaN基深紫外激光二极管(Deep Ultraviolet Laser Diodes,DUV-LD)有源区内载流子浓度,减少载流子泄露,提出一种DUV-LD双阻挡层结构,相对于传统的单一电子阻挡层(Electron Blocking Layer, EBL)结构,又引入一空穴阻挡层(Hole Blocking Layer, HBL),仿真结果证明空穴阻挡层的应用能很好地减少空穴泄漏.同时又对双阻挡层改用五周期Al0.98Ga0.02N/Al0.9Ga0.1N多量子势垒层结构,结果显示与矩形EBL和HBL激光二极管相比,多量子势垒EBL和HBL激光二极管有更好的斜率效率,并且有源区内电子和空穴载流子浓度以及辐射复合速率都有效提高,其中多量子势垒EBL在阻挡电子泄露方面效果更显著.  相似文献   

2.
汤寅  蔡青  杨莲红  董可秀  陈敦军  陆海  张荣  郑有炓 《中国物理 B》2017,26(3):38503-038503
To enhance the avalanche ionization, we designed a new separate absorption and multiplication AlGaN solarblind avalanche photodiode(APD) by using a high/low-Al-content AlGaN heterostructure as the multiplication region instead of the conventional AlGaN homogeneous layer. The calculated results show that the designed APD with Al_(0.3)Ga_(0.7)N/Al_(0.45)Ga_(0.55)N heterostructure multiplication region exhibits a 60% higher gain than the conventional APD and a smaller avalanche breakdown voltage due to the use of the low-Al-content Al_(0.3)Ga_(0.7)N which has about a six times higher hole ionization coefficient than the high-Al-content Al_(0.45)Ga_(0.55)N. Meanwhile, the designed APD still remains a good solar-blind characteristic by introducing a quarter-wave AlGaN/AlN distributed Bragg reflectors structure at the bottom of the device.  相似文献   

3.
The design of the active region structures, including the modifications of structures of the quantum barrier(QB) and electron blocking layer(EBL), in the deep ultraviolet(DUV) Al Ga N laser diode(LD) is investigated numerically with the Crosslight software. The analyses focus on electron and hole injection efficiency, electron leakage, hole diffusion,and radiative recombination rate. Compared with the reference QB structure, the step-like QB structure provides high radiative recombination and maximum output power. Subsequently, a comparative study is conducted on the performance characteristics with four different EBLs. For the EBL with different Al mole fraction layers, the higher Al-content Al Ga N EBL layer is located closely to the active region, leading the electron current leakage to lower, the carrier injection efficiency to increase, and the radiative recombination rate to improve.  相似文献   

4.
In order to suppress the electron leakage to p-type region of near-ultraviolet GaN/In_xGa_(1-x )N/GaN multiple-quantumwell(MQW) laser diode(LD), the Al composition of inserted p-type AlxGa_(1-x)N electron blocking layer(EBL) is optimized in an effective way, but which could only partially enhance the performance of LD. Here, due to the relatively shallow GaN/In_(0.04)Ga_(0.96)N/GaN quantum well, the hole leakage to n-type region is considered in the ultraviolet LD. To reduce the hole leakage, a 10-nm n-type Al_xGa_(1-x)N hole blocking layer(HBL) is inserted between n-type waveguide and the first quantum barrier, and the effect of Al composition of Al_xGa_(1-x)N HBL on LD performance is studied. Numerical simulations by the LASTIP reveal that when an appropriate Al composition of Al_xGa_(1-x)N HBL is chosen, both electron leakage and hole leakage can be reduced dramatically, leading to a lower threshold current and higher output power of LD.  相似文献   

5.
郭敏  郭志友  黄晶  刘洋  姚舜禹 《中国物理 B》2017,26(2):28502-028502
In Ga N light-emitting diodes(LEDs) with Ga N/In Ga N/Al Ga N/In Ga N/Ga N composition-graded barriers are proposed to replace the sixth and the middle five Ga N barriers under the condition of removing the electron blocking layer(EBL)and studied numerically in this paper. Simulation results show that the specially designed barrier in the sixth barrier is able to modulate the distributions of the holes and electrons in quantum well which is adjacent to the specially designed barrier. Concretely speaking, the new barrier could enhance both the electron and hole concentration remarkably in the previous well and reduce the hole concentration for the latter one to some extent along the growth direction. What is more,a phenomenon, i.e., a better carrier distribution in all the wells, just appears with the adoption of the new barriers in the middle five barriers, resulting in a much higher light output power and a lower efficiency droop than those in a conventional LED structure.  相似文献   

6.
《中国物理 B》2021,30(9):97201-097201
To study the electron transport properties in InGaN channel-based heterostructures,a revised Fang-Howard wave function is proposed by combining the effect of GaN back barrier.Various scattering mechanisms,such as dislocation impurity(DIS) scattering,polar optical phonon(POP) scattering,piezoelectric field(PE) scattering,interface roughness(IFR) scattering,deformation potential(DP) scattering,alloy disorder(ADO) scattering from InGaN channel layer,and temperature-dependent energy bandgaps are considered in the calculation model.A contrast of AlInGaN/AlN/InGaN/GaN double heterostructure(DH) to the theoretical AlInGaN/AlN/InGaN single heterostructure(SH) is made and analyzed with a full range of barrier alloy composition.The effect of channel alloy composition on InGaN channel-based DH with technologically important Al(In,Ga)N barrier is estimated and optimal indium mole fraction is 0.04 for higher mobility in DH with Al_(0.4)In_(0.07)Ga_(0.53)N barrier.Finally,the temperature-dependent two-dimensional electron gas(2 DEG) density and mobility in InGaN channel-based DH with Al_(0.83)In_(0.13)Ga_(0.0)4 N and Al_(0.4)In_(0.07)Ga_(0.53)N barrier are investigated.Our results are expected to conduce to the practical application of InGaN channel-based heterostructures.  相似文献   

7.
Blue InGaN light-emitting diodes (LEDs) with a conventional electron blocking layer (EBL), a common n-AlGaN hole blocking layer (HBL), and an n-AlGaN HBL with gradual Al composition are investigated numerically, which involves analyses of the carrier concentration in the active region, energy band diagram, electrostatic field, and internal quantum efficiency (IQE). The results indicate that LEDs with an n-AlGaN HBL with gradual Al composition exhibit better hole injection efficiency, lower electron leakage, and a smaller electrostatic field in the active region than LEDs with a conventional p-AlGaN EBL or a common n-AlGaN HBL. Meanwhile, the efficiency droop is alleviated when an n-AlGaN HBL with gradual Al composition is used.  相似文献   

8.
The performance characteristics of deep violet In0.082Ga0.918N/GaN double quantum well (DQW) laser diodes (LDs) with different electron blocking layer (EBL) including a ternary AlGaN bulk EBL, a quaternary AlInGaN bulk EBL and ternary AlGaN multi quantum barrier (MQB) EBL has been numerically investigated. Inspired by the abovementioned structures, a new LD structure with a quaternary AlInGaN MQB EBL has been proposed to improve the performance characteristics of the deep violet InGaN DQW LDs. Simulation results indicated that the LD structure with the quaternary AlInGaN MQB EBL present the highest output power, slope efficiency and differential quantum efficiency (DQE) and lowest threshold current compared with the above mentioned structures. They also indicated that choosing an appropriate aluminum (Al) and indium (In) composition in the quaternary AlInGaN MQB layers could control both piezoelectric and spontaneous polarizations. It will decrease the electron overflow from the active region to p-side and increased the contribution of electron and hole carriers to the radiative recombination effectively. Enhancing radiative recombination in the well using the quaternary AlInGaN MQB EBL also increased the optical output power and optical intensity.  相似文献   

9.
In this report, we designed a light emitting diode (LED) structure in which an N-polar p-GaN layer is grown on top of Ga-polar In0.1Ga0.9N/GaN quantum wells (QWs) on an n-GaN layer. Numerical simulation reveals that the large polarization field at the polarity inversion interface induces a potential barrier in the conduction band, which can block electron overflow out of the QWs. Compared with a conventional LED structure with an Al0.2Ga0.8N electron blocking layer (EBL), the proposed LED structure shows much lower electron current leakage, higher hole injection, and a significant improvement in the internal quantum efficiency (IQE). These results suggest that the polarization induced barrier (PIB) is more effective than the AlGaN EBL in suppressing electron overflow and improving hole transport in GaN-based LEDs.  相似文献   

10.
A new multilayer organic light-emitting device (OLED) is fabricated by inserting kalium chloride (KCl) thin layer (1 nm) into hole transport layer (HTL). It has the configuration of ITO/NPB(15 nm)/KCl(1 nm)/NPB(25 nm)/Alq3(60 nm)/KCl(1 nm)/Al. The electroluminescence (EL) result shows that the performance of the novel device has obviously improvement compared with the normal structure (ITO/NPB(40 nm)/Alq3(60 nm)/KCl(1 nm)/Al). The EL and efficiency are about 1.4 and 1.3 times than that of conventional device. The suggested mechanism is that the KCl layer in N,N′-diphenyl-N,N′-bis(1-napthyl–phenyl)-1,1′-biphenyl-4,4′-diamine (NPB) can block the holes of NPB and then balance the holes and electrons. The better recombination of holes and electrons is beneficial to the enhancing properties of OLED.  相似文献   

11.
AlGaN-based ultraviolet light-emitting diodes(UV-LEDs) have attracted considerable interest due to their wide range of application fields. However, they are still suffering from low light out power and unsatisfactory quantum efficiency.The utilization of polarization-doped technique by grading the Al content in p-type layer has demonstrated its effectiveness in improving LED performances by providing sufficiently high hole concentration. However, too large degree of grading through monotonously increasing the Al content causes strains in active regions, which constrains application of this technique, especially for short wavelength UV-LEDs. To further improve 340-nm UV-LED performances, segmentally graded Al content p-Al_xGa_(1-x)N has been proposed and investigated in this work. Numerical results show that the internal quantum efficiency and output power of proposed structures are improved due to the enhanced carrier concentrations and radiative recombination rate in multiple quantum wells, compared to those of the conventional UV-LED with a stationary Al content AlGaN electron blocking layer. Moreover, by adopting the segmentally graded p-Al_xGa_(1-x)N, band bending within the last quantum barrier/p-type layer interface is effectively eliminated.  相似文献   

12.
<正>In this study,the characteristics of nitride-based light-emitting diodes with different last barrier structures are analysed numerically.The energy band diagrams,electrostatic field near the last quantum barrier,carrier concentration in the quantum well,internal quantum efficiency,and light output power are systematically investigated.The simulation results show that the efficiency droop is markedly improved and the output power is greatly enhanced when the conventional GaN last barrier is replaced by an AlGaN barrier with Al composition graded linearly from 0 to 15% in the growth direction.These improvements are attributed to enhanced efficiencies of electron confinement and hole injection caused by the lower polarization effect at the last-barrier/electron blocking layer interface when the graded Al composition last barrier is used.  相似文献   

13.
We investigate the performances of the near-ultraviolet(about 350 nm-360 nm) light-emitting diodes(LEDs) each with specifically designed irregular sawtooth electron blocking layer(EBL) by using the APSYS simulation program.The internal quantum efficiencies(IQEs),light output powers,carrier concentrations in the quantum wells,energy-band diagrams,and electrostatic fields are analyzed carefully.The results indicate that the LEDs with composition-graded pAl_xGa_(1-x)N irregular sawtooth EBLs have better performances than their counterparts with stationary component p-AlGaN EBLs.The improvements can be attributed to the improved polarization field in EBL and active region as well as the alleviation of band bending in the EBL/p-AlGaN interface,which results in less electron leakage and better hole injection efficiency,thus reducing efficiency droop and enhancing the radiative recombination rate.  相似文献   

14.
The carrier-density-dependent spin relaxation dynamics for modulation-doped GaAs/Al_(0.3)Ga_(0.7)As quantum weiis is studied using the time-resolved magneto-Kerr rotation measurements.The electron spin relaxation time and its in-plane anisotropy are studied as a function of the optically injected electron density.Moreover,the relative strength of the Rashba and the Dresselhaus spin-orbit coupling fields,and thus the observed spin relaxation time anisotropy,is further tuned by the additional excitation of a 532 nm continuous wave laser,demonstrating an effective spin relaxation manipulation via an optical gating method.  相似文献   

15.
Different thicknesses of cesium chloride (CsCl) and various alkali metal chlorides were inserted into organic light-emitting diodes (OLEDs) as electron injection layers (EILs). The basic structure of OLED is indium tin oxide (ITO)/N,N′-diphenyl-N,N′-bis(1-napthyl-phenyl)-1.1′-biphenyl-4.4′-diamine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq3)/Mg:Ag/Ag. The electroluminescent (EL) performance curves show that both the brightness and efficiency of the OLEDs can be obviously enhanced by using a thin alkali metal chloride layer as an EIL. The electron injection barrier height between the Alq3 layer and Mg:Ag cathode is reduced by inserting a thin alkali metal chloride as an EIL, which results in enhanced electron injection and electron current. Therefore, a better balance of hole and electron currents at the emissive interface is achieved and consequently the brightness and efficiency of OLEDs are improved.  相似文献   

16.
高效率的有机电致发光器件   总被引:2,自引:0,他引:2  
有机电致发光器件 (OL EDs)的发光机理包括电子和空穴从电极的注入、激子的形成及复合发光 ,其中 ,空穴和电子的注入平衡是非常重要的。为了平衡载流子的注入以得到高效率和稳定性好的器件 ,人们不仅使用了电子注入更为有效的 L i F/ Al[1] 和 Cs F/ Al[2 ] 等复合电极 ,同时也使用了空穴缓冲层 ,如 S.A.Van Slyke等 [3]在ITO和 NPB之间使用 Cu Pc,使得器件的稳定性得到了明显的提高 ;A.Gyoutoku等[4 ] 用碳膜使器件的半寿命超过 3 5 0 0小时 ;最近 ,Y.Kurosaka等 [5]和 Z.B.Deng[6 ]分别在 ITO和空穴传输层之间插入一薄层 Al…  相似文献   

17.
本文提出了用双阶渐变阶梯和倒双阶渐变阶梯形电子阻挡层(EBL)以减少AlGaN基深紫外激光二极管(DUV-LDs)在p型区的电子泄露,并用Crosslight软件模拟仿真了双阶渐变阶梯和倒双阶渐变阶梯形EBL结构的光电特性,结果发现:具有倒双阶渐变阶梯形EBL的激光器拥有比双阶渐变阶梯形EBL激光器更高的斜率效率(SE),更高的输出功率,更低的阈值电流和阈值电压,更高的有效势垒高度和更低的电子泄露.这意味着前者拥有更强的抑制电子泄露的能力.在与矩形EBL结构对比中发现,所提出的结构还提高了有源区载流子浓度和辐射复合速率,进一步提高了DUV-LDs的光电性能.  相似文献   

18.
The efficiency of organic light-emitting devices (OLEDs) based on N,N'-bis(1-naphthyl)-N,N'-diphenyl-N,1'-biphenyl-4,4'-diamine (NPB) (the hole transport layer) and tris(8-hydroxyquinoline) aluminum (Alq3) (both emission and electron transport layers) is improved remarkably by inserting a LiF interlayer into the hole transport layer. This thin LiF interlayer can effectively influence electrical performance and significantly improve the current efficiency of the device. A device with an optimum LiF layer thickness at the optimum position in NPB exhibits a maximum current efficiency of 5.96 cd/A at 215.79 mA/cm2, which is about 86% higher than that of an ordinary device (without a LiF interlayer, 3.2 cd/A). An explanation can be put forward that LiF in the NPB layer can block holes and balance the recombination of holes and electrons. The results may provide some valuable references for improving OLED current efficiency.  相似文献   

19.
刘佰全  兰林锋  邹建华  彭俊彪 《物理学报》2013,62(8):87302-087302
采用新型双空穴注入层N, N, N', N'-tetrakis(4-Methoxy-phenyl)benzidine/Copper phthalocyanine(MeO-TPD/CuPc)及器件结构:ITO/MeO-TPD(15 nm)/CuPc(15 nm)/ N, N'-Bis(naphthalen-1-yl)-N, N'-bis(phenyl)benzidine (NPB, 15 nm)/8-hydroxyquinoline (Alq3, 50 nm)/LiF(1 nm)/Al(120 nm), 研制出高效有机发光二极管(器件D), 与其他器件(器件A, 没有空穴注入层的器件; 器件B, MeO-TPD单空穴注入层; 器件C, CuPc单空穴注入层)相比, 其性能得到明显改善. 器件D的起亮电压降至3.2 V, 比器件A, B, C的起亮电压分别降低了2, 0.3, 0.1 V. 器件D在10 V时, 其最大亮度为23893 cd/m2, 最大功率效率为1.91 lm/W, 与器件A, B, C的最大功率效率相比, 分别提高了43% (1.34 lm/W), 22% (1.57 lm/W), 7% (1.79 lm/W). 性能改善的主要原因是由于空穴注入和传输性能得到了改善, 通过单空穴型器件的J-V 曲线对这一现象进行了分析. 关键词: 有机发光二极管 空穴注入层 功率效率 势垒  相似文献   

20.
With the purpose to increase the uniformity of carrier distribution without sacrificing the enhancement of carrier injection efficiency, the light-emitting diodes (LEDs) without an electron-blocking layer (EBL) by using AlGaN step-like barriers (SLBs) is proposed and investigated numerically. The simulation results show that the enhanced electron confinement and hole injection efficiency are mainly attributed to the mitigated downward band bending induced by polarization field at the interface of the last barrier and EBL and the increased carrier distribution uniformity is due to step-like potential height for carrier of the new designed LEDs. In addition, the distribution of radiative recombination rate and the efficiency droop are markedly improved when the conventional GaN barriers are replaced by AlGaN SLBs and the EBL is removed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号