首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《中国物理 B》2021,30(7):76104-076104
Using the structure search of particle swarm optimization(PSO) algorithm combined with density functional theory(DFT), we conduct a systematic two-dimensional(2D) material research on the SiO and discover a P2 monolayer structure.The phonon spectrum shows that the 2D P2 is dynamic-stable under ambient pressure. Molecular dynamics simulations show that 2D P2 can still exist stably at a high temperature of 1000 K, indicating that 2D P2 has application potential in high-temperature environments. The intrinsic 2D P2 structure has a quasi-direct band gap of 3.2 e V. The 2D P2 structure can be transformed into a direct band gap semiconductor by appropriate strain, and the band gap can be adjusted to the ideal band gap of 1.2 e V–1.6 e V for photovoltaic materials. These unique properties of the 2D P2 structure make it expected to have potential applications in nanomechanics and nanoelectronics.  相似文献   

2.
Using first-principles calculations, we investigate the two-dimensional arsenic nanosheet isolated from bulk gray arsenic. Its dynamical stability is confirmed by phonon calculations and molecular dynamics analyzing. The arsenic sheet is an indirect band gap semiconductor with a band gap of 2.21 e V in the hybrid HSE06 functional calculations. The valence band maximum(VBM) and the conduction band minimum(CBM) are mainly occupied by the 4p orbitals of arsenic atoms,which is consistent with the partial charge densities of VBM and CBM. The charge density of the VBM G point has the character of a π bond, which originates from p orbitals. Furthermore, tensile and compressive strains are applied in the armchair and zigzag directions, related to the tensile deformations of zigzag and armchair nanotubes, respectively. We find that the ultimate strain in zigzag deformation is 0.13, smaller than 0.18 of armchair deformation. The limit compressive stresses of single-layer arsenic along armchair and zigzag directions are-4.83 GPa and-4.76 GPa with corresponding strains of-0.15 and-0.14, respectively.  相似文献   

3.
相琳琳  杨身园 《中国物理 B》2017,26(8):87103-087103
Using first-principles calculations based on density functional theory, we systematically study the structural deformation and electronic properties of wurtzite CdX(X = S, Se, Te) bulk and nanowires(NWs) under uniaxial [0001] strain. Due to the intrinsic shrinking strain induced by surface contraction, large NWs with {10ˉ10} facets have heavy hole(HH)-like valence band maximum(VBM) states, while NWs with {11ˉ20} facets have crystal hole(CH)-like VBM states. The external uniaxial strain induces an HH–CH band crossing at a critical strain for both bulk and NWs, resulting in nonlinear variations in band gap and hole effective mass at VBM. Unlike the bulk phase, the critical strain of NWs highly depends on the character of the VBM state in the unstrained case, which is closely related to the size and facet of NWs. The critical strain of bulk is at compressive range, while the critical strain of NWs with HH-like and CH-like VBM appears at compressive and tensile strain, respectively. Due to the HH–CH band crossing, the charge distribution of the VBM state in NWs can also be tuned by the external uniaxial strain. Despite the complication of the VBM state, the electron effective mass at conduction band minimum(CBM) of NWs shows a linear relation with the CBM–HH energy difference, the same as the bulk material.  相似文献   

4.
Ultraviolet(UV) photodetectors based on wide band gap semiconductor have attracted much attention for their small volume, low working voltage, long lifetime, good chemical and thermal stability. Up to now, many researches have been done on the semiconductors based UV detectors and some kinds of detectors have been made, such as metal–semiconductor–metal(MSM), Schottky, and PIN-type detectors. However, the sensitivity values of those detectors are still far from the expectation. Recent years, surface plasmon(SP) has been considered to be an effective way to enhance the sensitivity of semiconductor based UV photodetector. When the light is matched with the resonance frequency of surface plasmon, the localized field enhancement or scattering effect will happen and thus the spectral response will be enhanced.Here, we present an overview of surface plasmon enhancing the performance of UV detectors, including the GaN, ZnO,and other wide band gap semiconductor UV detectors. Both fundamental and experimental achievements are contained in this review.  相似文献   

5.
Silicon is a preferred material in solar cells,and most of silicon allotropes have an indirect band gap.Therefore,it is important to find new direct band gap silicon.In the present work,a new direct band gap silicon allotrope of o-Si32 is discovered.The elastic constants,elastic anisotropy,phonon spectra,and electronic structure of o-Si32 are obtained using first-principles calculations.The results show that o-Si32 is mechanically and dynamically stable and is a direct semiconductor material with a band gap of 1.261 e V.  相似文献   

6.
陈丽娟 《中国物理》2006,15(4):798-801
The stability and electronic structure of hypothetical InN nanotubes were studied by first-principles density functional theory. It was found that the strain energies of InN nanotubes are smaller than those of carbon nanotubes of the same radius. Single-wall zigzag InN nanotubes were found to be semiconductors with a direct band gap while the armchair counterparts have an indirect band gap. The band gaps of nanotubes decrease with increasing diameter, similar to the case of carbon nanotubes.  相似文献   

7.
AlN/GaN superlattice buffer is inserted between GaN epitaxial layer and Si substrate before epitaxial growth of GaN layer. High-quality and crack-free GaN epitaxial layers can be obtained by inserting AlN/GaN superlattice buffer layer. The influence of AlN/GaN superlattice buffer layer on the properties of GaN films are investigated in this paper. One of the important roles of the superlattice is to release tensile strain between Si substrate and epilayer. Raman spectra show a substantial decrease of in-plane tensile strain in GaN layers by using AlN/GaN superlattice buffer layer. Moreover, TEM cross-sectional images show that the densities of both screw and edge dislocations are significantly reduced. The GaN films grown on Si with the superlattice buffer also have better surface morphology and optical properties.  相似文献   

8.
《中国物理 B》2021,30(6):67102-067102
Experimentally synthesized MoSi_2N_4(Science 369 670(2020)) is a piezoelectric semiconductor. Here, we systematically study the large biaxial(isotropic) strain effects(0.90–1.10) on electronic structures and transport coefficients of monolayer MoSi_2N_4 by density functional theory(DFT). With a/a0 from 0.90 to 1.10, the energy band gap firstly increases, and then decreases, which is due to transformation of conduction band minimum(CBM). Calculated results show that the MoSi_2N_4 monolayer is mechanically stable in the considered strain range. It is found that the spin-orbital coupling(SOC) effects on Seebeck coefficient depend on the strain. In unstrained MoSi_2N_4, the SOC has neglected influence on Seebeck coefficient. However, the SOC can produce important influence on Seebeck coefficient, when the strain is applied,for example, 0.96 strain. The compressive strain can change relative position and numbers of conduction band extrema(CBE), and then the strength of conduction bands convergence can be enhanced, to the benefit of n-type ZT_e. Only about0.96 strain can effectively improve n-type ZT_e. Our works imply that strain can effectively tune the electronic structures and transport coefficients of monolayer MoSi_2N_4, and can motivate farther experimental exploration.  相似文献   

9.
The influence of a deep-level-defect(DLD) band formed in a heavily Mg-doped GaN contact layer on the performance of Ni/Au contact to p-GaN is investigated. The thin heavily Mg-doped GaN(p++-GaN) contact layer with DLD band can effectively improve the performance of Ni/Au ohmic contact to p-GaN. The temperature-dependent I–V measurement shows that the variable-range hopping(VRH) transportation through the DLD band plays a dominant role in the ohmic contact. The thickness and Mg/Ga flow ratio of p++-GaN contact layer have a significant effect on ohmic contact by controlling the Mg impurity doping and the formation of a proper DLD band. When the thickness of the p++-GaN contact layer is 25 nm thick and the Mg/Ga flow rate ratio is 10.29%, an ohmic contact with low specific contact resistivity of 6.97×10-4?·cm2 is achieved.  相似文献   

10.
陈燕文  谭桢  赵连锋  王敬  刘易周  司晨  袁方  段文晖  许军 《中国物理 B》2016,25(3):38504-038504
Various biaxial compressive strained GaSb p-channel metal–oxide–semiconductor field-effect transistors(MOSFETs)are experimentally and theoretically investigated. The biaxial compressive strained GaSb MOSFETs show a high peak mobility of 638 cm~2/V·s, which is 3.86 times of the extracted mobility of the fabricated GaSb MOSFETs without strain.Meanwhile, first principles calculations show that the hole effective mass of Ga Sb depends on the biaxial compressive strain.The biaxial compressive strain brings a remarkable enhancement of the hole mobility caused by a significant reduction in the hole effective mass due to the modulation of the valence bands.  相似文献   

11.
朱旭辉  陈向荣  刘邦贵 《中国物理 B》2016,25(5):57501-057501
The electronic structures, the effective masses, and optical properties of spinel CdCr_2S_4 are studied by using the fullpotential linearized augmented planewave method and a modified Becke–Johnson exchange functional within the densityfunctional theory. Most importantly, the effects of the spin–orbit coupling(SOC) on the electronic structures and carrier effective masses are investigated. The calculated band structure shows a direct band gap. The electronic effective mass and the hole effective mass are analytically determined by reproducing the calculated band structures near the BZ center.SOC substantially changes the valence band top and the hole effective masses. In addition, we calculated the corresponding optical properties of the spinel structure CdCr_2S_4. These should be useful to deeply understand spinel CdCr_2S_4 as a ferromagnetic semiconductor for possible semiconductor spintronic applications.  相似文献   

12.
杭阳  吴文志  于进  郭万林 《中国物理 B》2016,25(2):23102-023102
Our density functional theory calculations show that the energy gap of bilayer α-graphyne can be modulated by a vertically applied electric field and interlayer strain. Like bilayer graphene, the bilayer α-graphyne has electronic properties that are hardly changed under purely mechanical strain, while an external electric field can open the gap up to 120 meV. It is of special interest that compressive strain can further enlarge the field induced gap up to 160 meV, while tensile strain reduces the gap. We attribute the gap variation to the novel interlayer charge redistribution between bilayer α-graphynes.These findings shed light on the modulation of Dirac cone structures and potential applications of graphyne in mechanicalelectric devices.  相似文献   

13.
The electronic structure, magnetic states, chemical bonding, and thermodynamic properties of β-US2 are investigated by using first-principles calculation through the density functional theory(DFT) +U approach. The obtained band structure exhibits a direct band gap semiconductor at Γ point with a band gap of 0.9 e V for β-US2, which is in good agreement with the recent experimental data. The charge-density differences, the Bader charge analysis, and the Born effective charges suggest that the U–S bonds of the β-US2 have a mixture of covalent and ionic characters, but the ionic character is stronger than covalent character. The Raman-active, infrared-active, and silent modes at the Γ point are further assigned and discussed. The obtained optical-mode frequencies indicate that the three apparent LO–TO(longitudinal optical–transverse optical) splittings occur in B1 u, B2 u, and B3 umodes, respectively. Furthermore, the Helmholtz free energy ?F, the specific heat ?E, vibrational entropy S, and constant volume CVare studied over a range from 0 K~100 K. We expect that our work can provide some valuable information for further experimental investigation of the dielectric properties and the infrared reflectivity spectrum of uranium chalcogenide.  相似文献   

14.
The effects of uniaxial tensile strain on the structural and electronic properties of positively charged oxygen vacancy defects in amorphous silica(a-SiO2)are systematically investigated using ab-initio calculation based on density functional theory.Four types of positively charged oxygen vacancy defects,namely the dimer,unpuckered,and puckered four-fold(4×),and puckered five-fold(5×)configurations have been investigated.It is shown by the calculations that applying uniaxial tensile strain can lead to irreversible transitions of defect structures,which can be identified from the fluctuations of the curves of relative total energy versus strain.Driven by strain,a positively charged dimer configuration may relax into a puckered 5×configuration,and an unpuckered configuration may relax into either a puckered 4×configuration or a forward-oriented configuration.Accordingly,the Fermi contacts of the defects remarkably increase and the defect levels shift under strain.The Fermi contacts of the puckered configurations also increase under strain to the values close to that of Eα′center in a-SiO2.In addition,it is shown by the calculations that the relaxation channels of the puckered configurations after electron recombination are sensitive to strain,that is,those configurations are more likely to relax into a two-fold coordinated Si structure or to hold a puckered structure under strain,both of which may raise up the thermodynamic charge-state transition levels of the defects into Si band gap.As strain induces more puckered configurations with the transition levels in Si band gap,it may facilitate directly the development of oxide charge accumulation and indirectly that of interface charge accumulation by promoting proton generation under ionization radiation.This work sheds a light on understanding the strain effect on ionization damage at an atomic scale.  相似文献   

15.
By means of the particle-swarm optimization method and density functional theory calculations, the lowestenergy structure of SnAs is determined to be a bilayer stacking system and the atoms on top of each other are of the same types. Using the hybrid functional of Heyd–Scuseria–Ernzerhof, SnAs is calculated to be a semiconductor with an indirect band gap of 1.71 eV, which decreases to 1.42 eV with the increase of the bi-axial tensile stress up to 2%, corresponding to the ideal value of 1.40 eV for potential photovoltaic applications. Based on the deformation potential theory, the two-dimensional(2 D) SnAs has high electron motilities along x and y directions(1.63 × 10~3 cm~2 V~(-1)s~(-1)). Our calculated results suggest that SnAs can be viewed as a new type of 2 D materials for applications in optoelectronics and nanoelectronic devices.  相似文献   

16.
丁建宁  王君雄  袁宁一  坎标  陈效双 《中国物理 B》2010,19(7):77103-077103
The electronic band structures of periodic models for Si-H compounds are investigated by the density functional theory.Our results show that the Si-H compound changes from indirect-gap semiconductor to direct-gap semiconductor with the increase of H content.The density of states,the partial density of states and the atomic charge population are examined in detail to explore the origin of this phenomenon.It is found that the Si-Si bonds are affected by H atoms,which results in the electronic band transformation from indirect gap to direct gap.This is confirmed by the nearest neighbour semi-empirical tight-binding (TB) theory.  相似文献   

17.
王顺  杜宇雷  廖文和 《中国物理 B》2017,26(1):17806-017806
Using the density functional theory, we have investigated the electronic and optical properties of two-dimensional Sc_2C monolayer with OH, F, or O chemical groups. The electronic structures reveal that the functionalized Sc_2C monolayers are semiconductors with a band gap of 0.44–1.55 eV. The band gap dependent optical parameters, like dielectric function, absorption coefficients, reflectivity, loss function, and refraction index were also calculated for photon energy up to 20 eV. At the low-energy region, each optical parameter shifts to red, and the peak increases obviously with the increase of the energy gap. Consequently, Sc_2C monolayer with a tunable band gap by changing the type of surface chemical groups is a promising 2D material for optoelectronic devices.  相似文献   

18.
《中国物理 B》2021,30(5):57101-057101
Based on ab initio density functional theory calculations, we demonstrate that two carbon-doped boron nitride analog of α-graphyne structures, B_3C_2N_3 and BC_6 N monolayers, are two-dimensional direct wide band gap semiconductors, and there are two inequivalent valleys in the vicinities of the vertices of their hexagonal Brillouin zones. Besides, B_3C_2N_3 and BC_6 N monolayers exhibit relatively high carrier mobilities, and their direct band gap feature is robust against the biaxial strain. More importantly, the energetically most favorable B_3C_2N_3 and BC_6 N bilayers also have direct wide band gaps, and valley polarization could be achieved by optical helicity. Finally, we show that BC_6 N monolayer might have high efficiency in photo-splitting reactions of water, and a vertical van der Waals heterostructure with a type-II energy band alignment could be designed using B_3C_2N_3 and BC_6 N monolayers. All the above-mentioned characteristics make B_3C_2N_3 and BC_6 N monolayers, bilayers, and their heterostructures recommendable candidates for applications in valleytronic devices,metal-free photocatalysts, and photovoltaic cells.  相似文献   

19.
We have fabricated the Al Ga N solar-blind ultraviolet metal–semiconductor–metal(MSM) photodetectors(PDs) with an Al composition of 0.55. The surface roughness and dislocations of the high-Al-content Al0.55 Ga0.45 N epitaxial layer are analyzed by atomic force microscopy and transmission electron microscopy, respectively. The device exhibits high spectral responsivity and external quantum efficiency due to the photoconductive gain effect. The current reveals a strong dependence on high temperatures in the range of 4–10 V. Moreover, the Poole–Frenkel emission model and changing space charge regions are employed to explain the carrier transport and photoconductive gain mechanisms for the Al Ga N PD, respectively.  相似文献   

20.
王静  张鹏  段香梅 《中国物理 B》2016,25(5):57301-057301
We have investigated the structural and electronic characteristics of hydrogenated boron-nitride bilayer(H–BNBN–H) using first-principles calculations. The results show that hydrogenation can significantly reduce the energy gap of the BN–BN into the visible-light region. Interestingly, the electric field induced by the interface dipoles helps to promote the formation of well-separated electron–hole pairs, as demonstrated by the charge distribution of the VBM and CBM.Moreover, the applied bias voltage on the vertical direction of the bilayer could modulate the band gap, resulting in transition from semiconductor to metal. We conclude that H–BNBN–H could improve the solar energy conversion efficiency, which may provide a new way for tuning the electronic devices to meet different environments and demands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号