首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
联吡啶以分子水平掺入SiO2凝胶玻璃中,显示出独特的光谱性质。其发射光谱除了正常的S1→S0跃迁产生的中心位于400nm的发射峰外,还出现了中心位于454nm的激基缔合物发射峰。经200℃处理后,联吡啶分子受Si-O网络刚性约束,激基缔合发射峰消失,出现了基于S2→S0辐射跃迁产生的325nm高能级发射峰。至550℃处理后,因联吡啶分子基本进入Si-O三维网络的间隙,发射光谱中只剩下振动结构明显的高能级荧光峰。上述结果为表征有机/无机复合材料微结构演变提供了荧光探针工具。  相似文献   

2.
This work deals with the low-temperature preparation of optically active silica-based materials. Tb3+-doped silica monolithic gels were elaborated at 40 °C. Tb3+–SSA-doped SiO2–TiO2 thin films were deposited by an original sol–gel approach, the aerosol–gel process, and heat-treated at 150 °C. Organic complexation of terbium ions was used to improve the active properties of doped silica gels and thin-film samples. Spectroscopic characterisations are reported for these samples. Photoluminescence increase by a factor two was observed for complexation by sulphosalicylic acid. Received: 16 May 2001 / Revised version: 31 August 2001 / Published online: 23 October 2001  相似文献   

3.
This study determined the influence of diacylglycerol (DAG) pre-emulsion on the gel properties and microstructure of golden thread surimi gels. DAG emulsion stabilized using sodium caseinate was pre-emulsified through ultrasound. The average particle size of DAG pre-emulsion decreased from 1324.15 nm to 41.19 nm, with notable improvements in apparent viscosity and storage stability. The surimi gels with different amounts (0%, 1%, 3%, 5%, and 7% w/w) of DAG pre-emulsion were prepared under heat induction. The whiteness of the composite gels markedly increased with the incorporation of DAG pre-emulsion. The peak T22 value of immobilized water, the gel strength, and water-holding capacity increased gradually, but it slightly decreased with the addition of 7% pre-emulsion. The curve of G′ and G″ kept climbing as the concentration of pre-emulsion, and the microstructure of the gel network tended to become denser and more orderly. Principal component analysis (PCA) of electronic nose results showed that the surimi gels containing pre-emulsion could be clearly distinguished from the control group. In conclusion, the addition of 5% DAG pre-emulsion to surimi not only improved gel properties to the highest extent but also be compensated for lipid loss during the rinsing of surimi.  相似文献   

4.
In this study, the effects of ultrasound treatment on the texture, physicochemical properties and protein structure of composite gels prepared by salted egg white (SEW) and cooked soybean protein isolate (CSPI) at different ratios were investigated. With the increased SEW addition, the ζ-potential absolute values, soluble protein content, surface hydrophobicity and swelling ratio of composite gels showed overall declining trends (P < 0.05), while the free sulfhydryl (SH) contents and hardness of exhibited overall increasing trends (P < 0.05). Microstructural results revealed that composite gels exhibited denser structure with the increased SEW addition. After ultrasound treatment, the particle size of composite protein solutions significantly decreased (P < 0.05), and the free SH contents of ultrasound-treated composite gels were lower than that of untreated composite gels. Moreover, ultrasound treatment enhanced the hardness of composite gels, and promoted the conversion of free water into non-flowable water. However, when ultrasonic power exceeded 150 W, the hardness of composite gels could not be further enhanced. FTIR results indicated that ultrasound treatment facilitated the composite protein aggregates to form a more stable gel structure. The improvement of ultrasound treatment on the properties of composite gels was mainly by promoting the dissociation of protein aggregates, and the dissociated protein particles further interacted to form denser aggregates through disulfide bond, thus facilitating the crosslinking and reaggregation of protein aggregates to form denser gel structure. Overall, ultrasound treatment is an effective approach to improve the properties of SEW-CSPI composite gels, which can improve the potential utilization of SEW and SPI in food processing.  相似文献   

5.
Magnetic hyperthermia experiments were carried out using a biphasic gel of La1−xSrxMnO3(LSMO) and γ-Al0.07 Fe1.93O3 with an AC magnetic field of amplitude 88 mT and a frequency of 108 kHz. Specific absorption rate (SAR) increases with the increased ratio of Al-substituted maghemite. The Tmax value for the gels prepared by the mixture of LSMO and Al-substituted maghemite can be adjusted to suit therapeutic temperature. The time required to reach optimum temperature decreased with the increased ratio of later. Such biphasic gel could be very useful for magnetic hyperthermia with in vivo control of temperature.  相似文献   

6.
In this study, soybean protein isolate (SPI) and pectin emulsion gels were prepared by thermal induction, and the effects of high intensity ultrasound (HIU) at various powers (0, 150, 300, 450 and 600 W) on the structure, gel properties and stability of emulsion gels were investigated. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) showed that the interaction between SPI and pectin was enhanced and the crystallinity of the emulsion gels was changed due to the HIU treatment. Confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) observations revealed that the particle size of the emulsion gels was decreased significantly by HIU treatment. The emulsion gel structure became more uniform and denser, which was conducive to storage stability. In addition, according to the low field nuclear magnetic resonance (LF-NMR) analysis, HIU treatment had no obvious impact on the content of bound water as the power increased to 450 W, while the content of free water decreased gradually and became immobilized water, which indicated that the water holding capacity of the emulsion gels was enhanced. Compared with untreated emulsion gel, differential scanning calorimetry (DSC) analysis showed that the denaturation temperature reached 131.9 ℃ from 128.2 ℃ when treated at 450 W. The chemical stability and bioaccessibility of β-carotene in the emulsion gels were improved significantly after HIU treatment during simulated in vitro digestion.  相似文献   

7.
TiO2-based coating containing amorphous calcium phosphate (CaP) was prepared on titanium alloy by microarc oxidation (MAO). The increase in the EDTA-2Na concentration was unfavorable for the crystallization of TiO2. After heat treatment, the amorphous CaP was crystallized. The thickness of the MAO coatings did not change when heat-treated at 400, 600 and 700 °C; while it increased slightly after heat treatment at 800 °C due to the crystallization of amorphous CaP and growth of TiO2. No apparent discontinuity between the coatings and substrates was observed at various heat-treatment temperatures, indicating the MAO coatings with good interfacial bonding to the substrate. The heat treatment did not alter the chemical composition of the MAO coating and the chemical states of Ti, Ca and P elements. However, it increased the roughness (Ra) of the MAO coating and improved the wetting ability of the MAO coating. In this work, preliminary investigation of the MG63 cell proliferation on the surface of the MAO and heat-treated MAO coatings was conducted. The MAO coating surface with about Ra = 220 nm may be suitable for the MG63 cell adhesion and proliferation. The increased roughness of the heat-treated MAO coatings may result in a decrease in the ability for cell adhesion and proliferation.  相似文献   

8.
The structure of polyacrylamide gels was studied using proton spin–lattice relaxation and PFG diffusion methods. Polyacrylamide gels, with total polymer concentrations ranging from 0.25 to 0.35 g/ml and crosslinker concentrations from 0 to 10% by weight, were studied. The data showed no effect of the crosslinker concentration on the diffusion of water molecules. The Ogston–Morris and Mackie–Meares models fit the general trends observed for water diffusion in gels. The diffusion coefficients from the volume averaging method also fit the data, and this theory was able to account for the effects of water-gel interactions that are not accounted for in the other two theories. The averaging theory also did not require the physically unrealistic assumption, required in the other two theories, that the acrylamide fibers are of similar size to water molecules. Contrary to the diffusion data,T1relaxation measurements showed a significant effect of crosslinker concentration on the relaxation of water in gels. The model developed using the Bloch equations and the volume averaging method described the effects of water adsorption on the gel medium on both the diffusion coefficients and the relaxation measurements. In the proposed model the gel medium was assumed to consist of three phases (i.e., bulk water, uncrosslinked acrylamide fibers, and a bisacrylamide crosslinker phase). The effects of the crosslinker concentration were accounted for by introducing the proton partition coefficient,Keq, between the bulk water and crosslinker phase. The derived relaxation equations were successful in fitting the experimental data. The partition coefficient,Keq, decreased significantly as the crosslinker concentration increased from 5 to 10% by weight. This trend is consistent with the idea that bisacrylamide tends to form hydrophobic regions with increasing crosslinker concentration.  相似文献   

9.
D. Dong 《Applied Surface Science》2009,255(15):7051-7055
Dispersible SiO2 nanoparticles were co-deposited with electroless Ni-P coating onto AISI-1045 steel substrates in the absence of any surfactants in plating bath. The resulting Ni-P/nano-SiO2 composite coatings were heat-treated for 1 h at 200 °C, 400 °C, and 600 °C, respectively. The hardness and wear resistance of the heat-treated composite coatings were measured. Moreover, the structural changes of the composite coatings before and after heat treatment were investigated by means of X-ray diffraction (XRD), while their elemental composition and morphology were analyzed using an energy dispersive spectrometer (EDS) and a scanning electron microscope (SEM). Results show that co-deposited SiO2 particles contributed to increase the hardness and wear resistance of electroless Ni-P coating, and the composite coating heat-treated at about 400 °C had the maximum hardness and wear resistance.  相似文献   

10.
The thermal phase transition temperatures of high (HMP) and low melting point (LMP) agarose gels were investigated by using UV–vis spectroscopy techniques. Transmitted light intensities from the gel samples with different agarose concentrations were monitored during the heating (gel-sol) and cooling (sol–gel) processes. It was observed that the transition temperatures, Tm, defined as the location of the maximum of the first derivative of the sigmoidal transition paths obtained from the UV–vis technique, slightly increased by increasing the agarose concentration in both the HMP and LMP samples. Here, we express the phase transitions of the agar-water system, as a representative of reversible physical gels, in terms of a modified Susceptible-Infected-Susceptible epidemic model whose solutions are the well-known 5-point sigmoidal curves. The gel point is hard to determine experimentally and various computational techniques are used for its characterization. Based on previous work, we locate the gel point, T0, of sol-gel and gel-sol transitions in terms of the horizontal shift in the sigmoidal transition curve. For the gel-sol transition (heating), T0 is greater than Tm, i.e. later in time, and the difference between T0 and Tm is reduced as the agarose content increases. For the sol-gel transition (cooling), T0 is again greater than Tm, but it is earlier in time for all agarose contents and moves forward in time and gets closer to Tm as the agarose content increases.  相似文献   

11.
《Composite Interfaces》2013,20(4):301-318
Polyacrylamide (PAM) doped by multiwalled carbon nanotube (MWNT) gels were prepared with different amounts of MWNTs varying in the range between 0.1 and 15 wt%. The PAM–MWNT composite gels were characterized by the steady state fluorescence technique (SSF). The alternative electrical conductivity (AC) of PAM–MWNT composite gels was measured by the dielectric spectroscopy technique. Observations around the gel point, t gel for PAM–MWNTs composite gels showed that the gel fraction exponent β obeyed the percolation result. The critical exponent r of AC electrical conductivity for the composite PAM–MWNT gel was also measured and found to be about 2.0, which agrees with a random resistor network.  相似文献   

12.
This paper investigates the effect of O2 plasma treatment on the electric property of Cu/SiCOH low dielectric constant (low-k) film integrated structure. The results show that the leakage current of Cu/SiCOH low-k integrated structure can be reduced obviously at the expense of a slight increase in dielectric constant k of SiCOH films. Bythe Fourier transform infrared (FTIR) analysis on the bonding configurations of SiCOH films treated by O2 plasmar it is found that the decrease of leakage current is related to the increase of Si-O cages originating from the linkage of Si dangling bonds through O, which makes the open pores sealed and reduces the diffusion of Cu to pores.  相似文献   

13.
Lanthanum aluminate ceramic powders could be prepared by a combined gel precipitation process from metal chlorides using ammonia. A slight modification in the conventional gel precipitation technique was carried out by introducing a step of ultrasonication followed by centrifugal washing of the gel. The dried gels produced pure phase lanthanum aluminate powders on calcination at 1100 °C for the combined gel-precipitated powders, and at 600 °C for the washed gel. The phase evolution was studied and it was found that the delay in obtaining monophasic LaAlO3 in the combined gel-precipitated powder owed to the crystallization of an impure phase LaOCl. This phase was not detected in the washed gel (WG) powders. TEM micrographs showed a uniform morphology for the calcined WG powders, which were in contrast to the irregular particles in the gel-precipitated (GP) powders. The uniform morphology was assigned to the ultrasonic effects during washing of the gel.  相似文献   

14.
In this study, emulsion gels were prepared by sonicated grass pea protein isolates (GPPI) at different ultrasonic amplitudes (25, 50 and 75 %) and times (5, 10 and 20 min). Formation of emulsion gels was induced by transglutaminase. Enzymatic gelation of emulsions stabilized by sonicated GPPI occurred in two stages. A relatively fast stage led to the formation of a weak gel which was followed by a slow stage that strongly reinforced the gel structure. Emulsion gels fabricated by sonicated GPPIs showed a homogeneous and uniform droplet distribution with higher elastic modulus compared to the native protein. A stiffer emulsion gel with a higher G' was formed after the protein was treated at 75 % amplitude for 10 min. After sonication of GPPI, the water holding capacity (WHC) of emulsion gels increased in accordance with the mechanical properties. Higher intermolecular cross-linking within the gel network increased the thermal stability of emulsion gels fabricated by sonicated GPPI. Although sonicated-GPPI emulsion gels clearly displayed homogenous microstructure in comparison to that made with native GPPI, the microstructures of these gels were nearly identical for all sonication amplitudes and times.  相似文献   

15.
This study was conducted to evaluate the effects of extra virgin olive (EVO) oil incorporation on the physicochemical properties and microstructure of surimi gels subjected to ultrasound-assisted water-bath heating. As the oil content was increased from 0 to 5 g/100 g, the breaking force and gel strength of the surimi gels significantly decreased, while the whiteness level exhibited the opposite tendency irrespective of the heating method. Compared with the traditional water-bath heating method, the ultrasonic heating promoted the unfolding of the α-helix structure and intensified the formation of β-sheet content and non-covalent bonds (ionic bonds, hydrogen bonds, and disulfide bonds), especially disulfide bonds, which contributed to the further crosslinking of the proteins and to gelation, thereby improving the gels’ strength. In addition, smaller cavities and compact microstructures were observed in the low-oil (≤3 g/100 g) surimi gels under ultrasonic treatment, which effectively prevented water migration in the gel network and resulted in a high water holding capacity and uniform water distribution. However, the ultrasonic treatment barely remedied the poor microstructures of the high-oil (>3 g/100 g) surimi gels owing to oil coalescence, which weakened the protein–protein interaction. In conclusion, ultrasonic treatment combined with water-bath heating significantly improved the gelation properties of the low-oil surimi gels, although it did not remarkably improve those of the high-oil gels. The choice of a suitable oil concentration could be of great importance for the production and functioning of surimi products via ultrasound-assisted treatments.  相似文献   

16.
The effect of agarose content on thermal phase transitions of the agarose gels was investigated by using Steady State Fluorescence (SSF) method. Scattered light, I sc and fluorescence intensity, I fl were monitored against temperature during heating and cooling processes to investigate phase transitions. Two regions were observed during the heating and cooling processes. At the high temperature region, double helix to coil (h-c) transition took place. However, during the cooling process coil to double helix (c-h) transitions occurred at low temperature region. Transition energies were determined using the Arrhenius treatment, and found to be strongly correlated with the agarose content in the gel system. Transition temperatures were determined from the derivative of the sigmoidal transition paths and found to be increased by increasing agarose content in both cases.  相似文献   

17.
A photon scattering technique for research on the sol-gel and gel-sol transitions in κ-carrageenan-water systems with various carrageenan contents (CC) was utilized for characterizing the fractal dimensions during gelation and swelling. It was observed that the scattered photon intensity, Isc, increased at all temperatures with an increase in the CC when Isc was monitored against temperature. Additionally, the sol-gel transition temperatures were found to be much lower than the gel-sol transition temperatures, causing hysteresis of the phase transition loops. Isc increased with an increase in CC at all test temperatures, which is attributed to the formation of a fractal-like carrageenan gel. After drying, the gels were used in swelling experiments where the gels were immersed in water at room temperature, reswelling to the original structure. It was observed that Isc from the carrageenan gels increased as the CC was increased. The fractal dimension, d, during gelation was found to increase as the gelation temperature was increased. On the other hand, the d values during swelling decreased as the swelling time was increased.  相似文献   

18.
ABSTRACT

The effect of high hydrostatic pressure (HHP) treatment (100–200?MPa, 10?min, 20°C) combined with sodium chloride and sodium phosphate on the physicochemical properties of beef gels was investigated. The water content, cooking losses, color, protein composition by SDS-PAGE analysis and texture parameters of beef gels were determined. The beef gels treated with high pressure at 150?MPa showed a synergistic effect in the increased water content and the decreased cooking losses compared with the unpressurized gels. The L*, a* and b* color values of beef gels were slightly decreased under HHP treatment at 100–200?MPa. In the SDS-PAGE analysis, the staining intensity of the α-actinin protein band was decreased in pressurized samples. The cohesiveness, adhesiveness, gel strength and modulus of elasticity were improved after HHP treatment. Application of high pressure treatment (150–200?MPa) before heat treatment would be beneficial for the manufacturing of low salt and/or low phosphate meat products for a healthy diet.  相似文献   

19.
The SiC/SiO2 deposition was performed to improve the oxidation resistive properties of carbon nanofiber (CNF) from electrospinning at elevated temperatures through sol-gel process. The stabilized polyacrylonitrile (PAN) fibers were coated with SiO2 followed by heat treatment up to 1000 and 1400 °C in an inert argon atmosphere. The chemical compositions of the CNFs surface heat-treated were characterized as C, Si and O existing as SiC and SiO2 compounds on the surface. The uniform and continuous coating improved the oxidation resistance of the carbon nanofibers. The residual weight of the composite was 70-80% and mixture of SiC, SiO2 and some residual carbon after exposure to air at 1000 °C.  相似文献   

20.
Pt/Co/Hf multilayers were prepared by magnetron sputtering, and the magnetic anisotropy was effectively regulated by Hf thickness and heat treatment in Pt/Co/Hf films. The interface microstructures were characterized. The influence of the interface microstructure on magnetic properties was studied. The results show that the magnetic anisotropy in Pt/Co/Hf films is closely related to the interface microstructure, which is influenced by Hf thickness and the heat treatment temperature. Microstructure analysis shows that after the Pt(3)/Co(1.5)/Hf(1) film is heat-treated, the CoOx content increases, more CoPt(111) forms, the interface is smoother and sharper, and the roughness of the Co/Hf interface decreases. Several factors work together to cause the magnetic anisotropy of the sample to change from in-plane magnetic anisotropy (IMA)to perpendicular magnetic anisotropy (PMA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号