首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
可调谐二极管激光吸收光谱法测量气体温度   总被引:3,自引:1,他引:2  
王健  黄伟  顾海涛  高秀敏  刘立鹏 《光学学报》2007,27(9):1639-1642
研究了一种新型的非接触式测温技术——可调谐二极管激光吸收光谱(TDLAS)测温技术。介绍了温度测量及调制吸收光谱技术原理,分析了调制幅度对气体温度测量的影响。优选了氧气吸收谱线对13163.78 cm-1和13164.18 cm-1,在搭建的高温实验系统上,实现了气体温度和浓度的同时测量。通过分析实测波形获得了谱线13164.18 cm-1在823~1323 K温度范围内的碰撞展宽系数和温度指数。实验结果表明,在823~1323 K温度范围内,系统温度测量的线性误差为0.65%,最大波动为±15 K。  相似文献   

2.
调谐半导体激光吸收光谱自平衡检测方法研究   总被引:12,自引:0,他引:12  
可调谐半导体激光吸收光谱技术(TDLAS)是利用半导体激光器的波长调谐特性,扫描待测气体特征吸收线,从而获得待测气体的浓度信息。基于可调谐半导体激光吸收光谱的自平衡检测方法能够有效地消除激光器光强波动等共模噪声和其他同性干扰的影响。实验表明自平衡检测方法可以获得较理想的结果,检测限低于体积比1.2×10-6,与直接吸收光谱法相比降低了一个数量级。自平衡检测电路简单,自带的电子增益补偿机制能够自动进行平衡探测,该方法不用加信号调制和锁相放大器,直接探测待测气体的吸收光谱,从而降低成本,减小系统装置体积,易于集成为便携式痕量气体检测仪。  相似文献   

3.
可调谐二极管激光吸收光谱(TDLAS)技术是利用二极管激光器波长调谐特性,获得被测气体的特征吸收光谱范围内的吸收光谱,从而对污染气体进行定性或者定量分析。在空气痕量气体检测中,一般需要和长光程吸收池相结合使用。可调谐二极管激光吸收光谱法就是在可调谐二极管激光器与长光程吸收池技术相结合的基础上发展起来的一种新的痕量气体检测方法。这种方法不仅精度较高,选择性强而且响应速度快。已经广泛用于大气中多种痕量气体的检测以及地面的痕量气体和气体泄漏的检测。在大部分痕量气体检测仪器中需要精确地对检测气体进行在线的浓度标定,文章介绍了一个简单而精确的浓度标定方法,从理论上进行了分析,然后通过实验证明了这种方法的可行性。  相似文献   

4.
针对二维气体浓度分布,主要选用多条H2O的吸收谱线,采用代数迭代重建算法,研究了在激光光束较少且假定温度分布已知的情况下,即不考虑燃烧场中温度对谱线强度的影响时,不同谱线条数对二维浓度重建结果的影响,对比了在同一浓度模型下通过增加激光光束与增加H2O吸收谱线条数对气体浓度重建结果的影响;研究了增加谱线条数重建气体浓度分布对不同温度与浓度分布模型的适应情况,其中,文中所选取的多条吸收谱线可以由一个激光器同时扫描得到。浓度测量区域采用10×10的网格划分,测量区域中的温度和浓度分布采用单峰不均匀分布与双峰不均匀分布,重建过程中计算了吸收谱线与激光光束的有效利用率。重建结果表明在激光光束较少时,增加吸收谱线条数可以获得更多与浓度相关的谱线参数信息,且与增加激光光束相比可以明显改善浓度重建结果,更主要的是增加谱线条数可以有效降低实验中硬件设备的成本投入以及测量系统的复杂性。  相似文献   

5.
利用可调谐半导体激光吸收光谱技术结合光信号相关技术可以实现气体浓度和流速的同时在线测量。文章首先介绍了气体浓度与流速测量的基本原理,然后对在近红外通讯波段附近的NH3吸收谱线进行分析,并从中选取适合测量的目标谱线,并进行了相应的计算分析。在常温常压下内径为0.016 m长度为1 m的管道内,利用流量计配制出不同浓度以及不同流速的NH3和N2混合气体进行相关的试验。利用线宽为15 MHz,可连续调谐范围为1 cm-1的激光二极管对位于6 548.7 cm-1处的NH3吸收谱线进行快速扫描,采用直接吸收计算的方法测量得到实时气体吸收信号并计算出气体浓度。同时利用非介入式的光信号相关法,通过布置在管道上下游两个探测器探测到的NH3浓度信号间的相关性,计算得到NH3气体从上游到下游的渡越时间,进而计算出气体流速。计算得到的NH3气体浓度值和流速值与流量计标定值之间相比,其相对误差分别在7%和10%之内。测量系统响应迅速,抗干扰能力强,测量结果重复性好,适用于恶劣的现场测量环境,具有很广的工业应用前景。  相似文献   

6.
基于可调谐半导体激光吸收光谱技术,研制了一种近红外乙炔气体检测系统。通过分析近红外波段乙炔分子的吸收谱线特性,选择了1.534 μm附近乙炔分子的吸收峰作为吸收谱线。该系统主要由分布反馈激光器、激光器驱动器、单光程对射式气室、光电探测模块及数字式锁相放大器构成。为了测试该检测系统的性能,配备了乙炔气体样品并开展了气体检测实验。实验结果显示,该系统的最小检测下限为0.02%;在体积分数为0.02%~1%范围内,二次谐波幅值与乙炔气体浓度呈现出良好的线性关系。通过长达20 h的稳定性实验测试了检测系统稳定性。鉴于近红外波段石英光纤传输损耗很小,可以将气室及光路部分与电路部分分离,从而可以进行远程气体检测,这是基于量子级联激光器、热光源的乙炔检测系统难以实现的。该系统采用了自主研制的分布反馈激光器驱动器和锁相放大器,结构简单,性价比高,便与集成,在工业现场乙炔浓度检测方面有着良好的应用前景。  相似文献   

7.
利用可调谐激光吸收光谱技术(TDLAS),扫描多条吸收谱线以实现气体温度分布的测量。文章给出了温度分布测量的原理和方程离散化的方法,在气体浓度和压力均匀时,利用带约束最小二乘法计算得到温度分布。根据HITRAN中6 330 cm-1附近的4条CO谱线的参数,建立了温度在300和600 K时,路径长度均为55 cm的两段温度分布模型,模拟了测量误差与温度区间长度约束条件的影响。结果表明随着测量误差的增大和约束条件的减弱,计算结果误差相应增大。在5%的测量误差下,计算结果的最大误差为11%,平均误差为2.2%。以管式炉中的高温段和室温下的低温段作为两段温度分布模型进行试验。利用6 330 cm-1处的垂直腔面发射激光二极管(VCSEL)扫描得到的4条CO谱线,通过背景信号的三次多项式拟合得到基线,求出温度分布计算所需的光谱吸收率积分值。在四种情况下, 计算温度分布结果与模型误差分别为7.3%,6.5%,4.7%和2.7%。  相似文献   

8.
可调谐激光二极管吸收光谱技术(TDLAS)是最有潜力的痕量气体在线监测技术之一。受测量原理的限制,其测量结果受温度和气压影响很大,目前多采用现场安装传感器来测量温度和气压信息,以对该误差进行修正。提出了利用在线参考气室对TDLAS系统中温度、气压变化引起的测量误差进行在线自校准;该参考气室内包含标准浓度的被测气体,并带有能变形的压力膜盒,工作的时候,该气室被放置在被测气体工作环境中,能自适应地调整室内气压和温度;在一次扫描过程中同时测得工作光路和参考光路的吸收光谱,并求得二者的吸收谱线强度比,即可得到校准后的被测痕量气体的浓度,无需考虑温度和气压影响;还介绍了这一自校准系统的原理、设计、实验和现场应用。  相似文献   

9.
应用可调谐半导体激光吸收光谱(TDLAS)技术开放单光路短光程检测西林瓶内氧气浓度,因玻璃瓶壁造成入射光多次反射和透射,形成多光束干涉,严重影响信号波形和检测精度。本文提出了一种改变激光入射角度来抑制瓶壁光学干扰的方法,理论分析了入射角度对透射光强分布的影响,详细推导了使两相干光束叠加部分在接收端探测范围之外的入射角度计算公式,并根据现场参数得到理论最佳入射角度。对氧气浓度1%的样瓶进行多次测量,将二次谐波信号峰值的平均值作为信号,峰值的标准差作为噪声,以信噪比(signal to noise radio, SNR)最大作为系统入射角角度的优化指标,实验获得系统的实际最佳入射角度。与决定系数较高的入射角度进行浓度预测对比,交互验证后的最小二乘拟合结果显示:相关系数分别为0.995 9和0.988 9,前者相比后者提高了0.7%,预测的均方根误差(root mean square errors of prediction, RMSEP)分别是0.003 1和0.005 3,前者相比后者降低了41.5%,说明本文方法所确定的最佳入射角,能有效抑制玻璃瓶壁引起的多光束干涉影响,改善系统检测精度。  相似文献   

10.
李红莲  李小亭  李金海  韩冰  董芳 《光学学报》2008,28(s2):271-274
采用可调谐二极管激光吸收光谱技术(TDLAS)对CO气体的浓度进行测量,应用整体二次谐波最小二乘法对测量信号的实验数据进行反演处理。基于可调谐二极管激光吸收光谱技术, 对CO在线监测仪测量结果的不确定度来源进行了分析, 采用直接评定法对各种因素引起的不确定度分量、标准不确定度和合成不确定度进行了评定。实验结果表明, 仪器示值引入的不确定度、标准气体浓度定值的不确定度以及环境温度变化和电源电压波动引入的不确定度是影响测量不确定度的主要因素。  相似文献   

11.
可调谐半导体激光吸收光谱技术(tunable diode laser absorption spectroscopy, TDLAS)是利用二极管激光器的波长调谐特性,获得被选定的待测气体特征吸收线的吸收光谱,从而对待测气体进行定性或定量分析。它具有高灵敏、高分辨以及快速检测等特点,已经广泛用于大气中多种痕量气体的检测以及泄漏气体的检测,也是在燃烧环境下对气体进行非侵入式实时测量的理想方法。TDLAS技术与开放式的多次反射池相结合,并利用自平衡探测加波长调制的新型检测方法,测量了酒精喷灯燃烧过程中产生的CO浓度,从测量结果中发现酒精喷灯火焰中CO的浓度成一定的周期性,并且得到火焰中CO的平均浓度为49.4(10-6体积比)。实验结果表明利用开放式多次反射池,结合自平衡探测加波长调制探测的新方法,满足了酒精喷灯燃烧过程中CO检测的需要,此系统为发展基于TDLAS的燃烧在线诊断技术奠定了基础。  相似文献   

12.
为了对电厂脱硝过程中逃逸的微量氨气进行在线检测,实验室采用可调谐激光吸收光谱技术对常温常压下以及不同温度下的低浓度氨气进行了测量试验,其中电厂逃逸氨气检测处温度约为650 K。通过分析近红外波段的氨气吸收谱线,并考虑实际测量环境H2O和CO2等浓度很大的气体吸收谱线的干扰,实验选取2.25 μm附近的ν23谱线作为浓度检测谱线。为了验证所选谱线对低浓度NH3的测量能力,实验对H2O,CO2和NH3的吸收谱线进行模拟,发现低浓度NH3受较大浓度的H2O和CO2谱线的干扰较小,尤其是CO2谱线的干扰可以忽略不计,且2.25 μm处谱线强度远远大于通讯波段1.53 μm处的谱线。基于新型Herriott池以及高温管式炉,结合可调谐激光吸收光谱中的直接吸收技术和波长调制技术,实现了对不同温度下超低浓度NH3的高分辨率快速检测。常温常压下其线型函数可以利用洛伦兹线型来近似描述,直接吸收测量技术可以使探测极限降低到0.225×10-6。通过采用简单降噪处理技术如多次平均、简单小波分析等,得到不同温度下的谐波信号与浓度具有良好的线性关系,为采用可调谐激光吸收光谱技术进行现场低浓度逃逸氨气检测提供了很好的依据。  相似文献   

13.
可调谐二极管激光吸收光谱(TDLAS)技术用于气体浓度检测时,会受到谐波检测中基线漂移及噪声的影响,因此如何去除系统噪声一直是研究的热点。分析了连续截断信号和构造hankel矩阵两种不同方法下,奇异值分解(SVD)对TDLAS系统检测的理论意义。将二次谐波信号分别用该方法进行矩阵化排列和奇异值分解,选取适当阈值将部分奇异值置零并重构矩阵,得到了这两种方法对基线纠漂和去噪的不同效果。实验证明,奇异值分解方法不需加入额外系统部件、不需通零气扣除背景,就能够快速有效地去除TDLAS系统噪声,而构造hankel矩阵的方法适用于去除高频噪声,连续截断信号的方法适用于进行基线纠漂。将该方法应用于实际TDLAS系统氨气检测时的二次谐波,系统噪声去除率达80%。  相似文献   

14.
通过具有高灵敏度、非侵入式等特性的可调谐二极管激光吸收光谱技术对发动机气缸工作过程等高温高压燃烧环境进行实时在线检测,是了解其内部燃烧过程进而研发高效发动机的重要手段之一。作为一种重要的温室气体和化石燃料燃烧的主要产物,二氧化碳对于了解燃烧过程具有重要的意义。为了寻找一种能够对高温高压燃烧过程中的二氧化碳浓度进行快速检测的方法,利用工作在室温条件下的近红外可调谐二极管激光器作为光源,以二氧化碳位于5 006.140 cm-1处的跃迁作为传感谱线,结合固定波长的吸收光谱调制技术,通过该CO2谱线的一次谐波归一化的二次谐波信号峰值实现对高温高压环境中CO2浓度测量,建立了一种可用于高温高压环境下的组份浓度的测量方法,通过实验验证得出该方法在5 atm压力、500 K温度下和10 atm压力、1 000 K温度下对于CO2浓度测量的平均标准偏差为3.99%;另外还对实验中所得CO2直接吸收及二次谐波信号进行了分析,得到了其吸收光谱在高温高压环境下的特性。  相似文献   

15.
研究了可调谐半导体激光吸收光谱技术实现气体浓度二维分布测量的方法,探索了重建气体浓度二维分布的模型和算法,并采用数值模拟的方式对重建程序进行了可行性验证。搭建了由24束激光束构成的场参数测量系统,以甲烷/空气预混火焰中H2O为测量对象,运用重建程序重建了火焰中H2O浓度的二维分布,实验结果分析表明,重建结果较真实的反应了火焰中H2O浓度的二维分布状态,为实现优化燃烧控制提供重要数据。  相似文献   

16.
可调谐半导体激光吸收光谱(tunable diode laser absorption spectroscopy,简称为TDLAS)技术具有高灵敏度、快速响应、非接触式、环境适应性强等优点,能够实现燃烧温度、组分浓度、速度等参量的实时动态在线测量。为准确测量高温下的水汽浓度,采用窄带半导体激光器作为光源,结合实验室的高温测量系统,记录了常压下1.39μm附近水汽在773~1 273K温度范围内的吸收光谱,利用多线组合非线性最小二乘法拟合得到高温吸收光谱的吸光度,找出了两条适合高温水汽浓度测量的吸收线7 154.35和7 157.73cm-1,首次提出高温水汽浓度测量的模型求解方法,该方法测得的高温下水汽浓度符合理论推理,浓度测量的标准误差低于0.2%,相对误差低于6%。通过实验验证了该测量方法的可行性。  相似文献   

17.
海洋与大气交换的CO2通量是研究海-气之间碳循环过程及海洋酸化问题的重要指标,其估算方法主要依赖于海水中CO2的测量。可调谐半导体激光吸收光谱(TDLAS)作为一种常用的气体浓度检测技术,因其具有较好的环境适应性、选择性和较高的灵敏度,亦可发挥出水中溶存气体原位测量的潜力。为验证将TDLAS技术应用到海洋中溶存CO2原位探测的可行性,将渗透膜脱气技术与实验室研发的TDLAS气体探测样机相结合,实现了海水中溶存CO2的原位探测。为适应水下的复杂环境,样机整体被设计为铝合金密封舱结构,具有良好的密封性、耐压性与耐腐蚀性。激光光源采用中心波数位于4 990 cm-1的DFB激光器,其波数扫描范围为4 992~4 994.5 cm-1,可覆盖CO2在4 992.51和4 993.74 cm-1的相邻两条吸收谱线。渗透膜采用具有优秀耐压性与透气性的Teflon AF-2400 X,可满足样机在深水区长期探测的目的。为兼顾较高探测灵敏度与较快响应速率双重指标要求,样机采用了一种小型化多次反射式气体吸收池,有效吸收光程可达8 m,内部仅需气体量24 mL,具有良好的吸收特性。在实验室对样机进行校正实验,使用样机对5种不同浓度(202.8×10-6,503×10-6,802×10-6,1 006×10-6和2 019×10-6)的标准CO2气体进行测量,测量值与实际值的线性相关度R2高达99.94%,最大相对误差小于8%,减小了样机误差对测量值的影响。为评估样机长时间工作的稳定性,使用样机对浓度为802×10-6的标准CO2气体进行了30 min的连续测量,平均测量浓度为802.6×10-6,其波动范围仅为10×10-6,样机精度约为0.5%,可满足水中溶存气体探测的要求。选取水深3米的近海码头进行试验,成功获得了24 h水中CO2的典型吸收光谱及浓度时间序列测量结果,验证了样机水下工作的能力与稳定性。通过在东海海域五处不同深度的区域进行现场试验,成功获取溶存CO2的典型吸收光谱,证明了结合渗透膜脱气技术的TDLAS探测样机在30 m以浅水域的工作适应性。  相似文献   

18.
调谐激光二极管吸收光谱(TDLAS)技术因其高分辨率、高灵敏度和快速测量等优点在工业生产、环境污染监测等方面受到广泛应用。波长调制光谱(wavelength modulation spectrum, WMS)的二次谐波信号经常用作气体浓度反演的检测信号。TDLAS检测性能与系统参数,如锁相放大器的时间常数、扫描幅度、扫描频率、调制幅度、调制频率等的选取紧密相关,实际测量中各参数的选择多以谱线形态特征为依据,参数之间的关联性未能得到较好体现。由于信号的采样与处理均在频域对谱线产生作用,各参数之间的作用相互关联。然而很少有研究参数对谱线频域的影响,针对此问题,在一定的理论基础上通过实验分别观察各调制参数对二次谐波信号的影响。通过保持其他参数不变,只改变一个参数的方法,得出各个参数对信号线型、频率特征及噪声引入的影响规律,继而分析并验证了多参数联合变化对谱线频带的决定作用。与基于时域特征的传统方法相比,基于谱线频率特征分析一方面具有与谱线信号采集检测处理机理相近的优点,另一方面可以直观得到各参数对主频带的影响和不同频率信号的衰减趋势。总结出基于频率特征的各参数的基本选取方法,以谱线频带和截止频率相互关系为判定标准,截止频率的大小由锁相放大器时间常数决定。通过设置合适的时间常数和扫描参数使信号频带与截止频率相近但不相交,使谱线频带内频率分量不产生衰减,频带外噪声得到最大抑制;再根据锁相放大器的性能和信号信噪比来确定调制参数,使谱线主频幅度最大;最后根据系统需求确定采样率。单周期采样点不变时,低扫描频率时检测精度相对提高但耗时较长;反之,扫描频率提高,速度变快但检测精度下降。通过联合影响规律调整关联参数,减小硬件限制对参数最优值选取造成的影响。可在考虑系统检测需求与硬件条件限制的前提下,通过参数选择得到最优二次谐波信号,为此技术的实际应用提供了参数优化的实验依据与参考方法。  相似文献   

19.
根据可调谐二极管激光吸收光谱及谐波探测的原理,建立以分布反馈式半导体激光器为可调谐光源,利用多次反射池进行点式采样的实验装置。基于甲烷分子1 653.7 nm附近的吸收线,实验研究二次谐波信号对甲烷浓度的响应线性,并实现空气中甲烷本底含量的测量。研究结果表明可调谐二极管激光气体检测技术可为城市燃气管道泄漏探测提供了一种灵敏度高、抗干扰能力强的有效手段。  相似文献   

20.
空心光波导(hollow waveguide, HWG)可以同时传输红外激光和目标气体,是激光气体传感器中的新型气体池,具有体积小、响应速度快的特点。基于可调谐二极管激光吸收光谱(TDLAS)技术,以空心光波导为气体池,研制了氨气激光传感器。采用波长调制光谱(wavelength modulation spectroscopy, WMS)技术,同时解调气体吸收的一次谐波(1f)和二次谐波(2f)信号,通过1f归一化2f信号实现免校准(calibration-free)测量。利用标准气体进行验证实验,结果表明,传感器的响应线性度R2为0.999 8,响应时间24 s。Allan方差结果表明积分时间18 s时检测限为26 ppbv。该传感器可以用于空气中痕量氨气的快速、高灵敏检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号