首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
The hydrogen bonded complexes between phenol derivatives and methyl acetate and methyl chloroacetate were studied in carbon tetrachloride solution by FTIR spectroscopy. Temperature variation studies were used to evaluate both formation constants and the enthalpies of complex formation. It is shown that the relative values of enthalpies associated with the hydrogen bonding process in the various studied systems depend mainly on the electron releasing ability of the phenol substituents as well as on the polarization state of the carbonyl bond of the ester. In addition, it is also shown that the observed shifts in the carbonyl stretching frequency upon complexation can be correlated with ΔH, thus providing a useful indirect way of measuring the strength of the hydrogen bond.  相似文献   

2.
The aim of this prospective study is to elucidate the relationship between the Voice Handicap Index (VHI) and several voice laboratory measurements in the network of the multidimensional voice assessment. Fifty-eight patients were included. Each patient replies to the questionnaire and performs a voice assessment during the same time. The following parameters were measured: minimum frequency, maximum frequency, range, minimum intensity, subglottic pressure, mean flow, maximum phonation time, jitter, and dysphonia severity index. Regarding the relationship with the scores of the VHI, poor correlations with the minimal frequency for all the scores except the emotional one (total and subscales) and with the range for only the physical one are found. Seventeen questions correlate with the voice laboratory measurements we performed, with a decreased distribution between physical, functional, and emotional subscales. We observe that acoustic parameter is correlated with the emotional subscale, the parameters of the profile range are more often involved in the emotional subscale, as is the minimal frequency, but never with the physical subscale, and all the subscales are interesting despite the smaller number of differences with the emotional one. The VHI and the laboratory measurements give independent informations in practice.  相似文献   

3.
Magnetic resonance spectroscopy (MRS) has long been considered the golden standard for non-invasive measurement of tissue fat content. With improved techniques for fat/water separation, imaging has become an alternative to MRS for fat quantification. Several imaging models have been proposed, but their performance relative to MRS at very low fat contents is yet not fully established. In this work, imaging and spectroscopy were compared at 1.5 T and 3 T in phantoms with 0-3% fat fraction (FF). We propose a multispectral model with individual a priori R2 relaxation rates for water and fat, and a common unknown R2′ relaxation. Magnitude and complex image reconstructions were also compared. Best accuracy was obtained with the imaging method at 1.5 T. At 3 T, the FFs were underestimated due to larger fat-water phase shifts. Agreement between measured and true FF was excellent for the imaging method at 1.5 T (imaging: FFmeas= 0.98 FFtrue− 0.01%, spectroscopy: FFmeas= 0.77 FFtrue+ 0.08%), and fair at 3 T (imaging: FFmeas= 0.91 FFtrue− 0.19%, spectroscopy: FFmeas= 0.79 FFtrue+ 0.02%). The imaging method was able to quantify FFs down to approx. 0.5%. We conclude that the suggested imaging model is capable of fat quantification with accuracy and precision similar to or better than spectroscopy and offers an improvement vs. a model with a common R2* relaxation only.  相似文献   

4.
Ping Li  L. M. Ng  Jim Liang 《Surface science》1997,380(2-3):530-539
The adsorption and thermal decomposition of perfluorodimethyl ether, (CF3)2O, on a high-surface-area Al2O3 surface was investigated by FTIR under both vacuum and pressure conditions. IR spectra in the 4000-1050 cm−1 range were collected and the spectral assignments were assisted by quantum chemical ab initio calculations. The spectral evidence indicated that (CF3)2O decomposed to form adsorbed fluoroformate, FCOO (ads). Increases of temperature (up to 525 K) caused the FCOO (ads) to convert to hydrogen formate, HCOO (ads). Surface hydroxyl groups participated in the decomposition of (CF3)2O and the conversion of FCOO (ads) to HCOO (ads). A decomposition mechanism is proposed.  相似文献   

5.
The FTIR spectrum of pentafluoroethane (R125) was measured in the mid infrared region from 900 to 4000 cm−1. Vibrational assignments for R125 are revised by comparison of previous and current experimental data with ab initio calculations at both the MP2/6-311+(d,p) and B3LYP/TZV+(3df,3p) levels of theory. High resolution FTIR spectra were recorded at room temperature and in an enclosive flow cell at a rotational temperature of 140 K. The cold spectrum was sufficiently resolved to enable rovibrational analyses of the overlapping ν4 (1200.7341 cm−1) and ν13 (1223.3 cm−1) bands, which have a/c hybrid and b-type character, respectively. Ground state combination differences were used to confirm assignment of 2375 lines to ν4 (Jmax = 86, Ka max = 50) and 2921 lines to ν13 (Jmax = 60, Ka max = 54). Effective rotational and centrifugal distortion constants were determined for ν4, and the polarization ratio was found to be . Severe Coriolis perturbations prevent any satisfactory fit to the ν13 band.  相似文献   

6.
Renal transplant patients often require imaging to ensure appropriate graft placement, to assess integrity of transplant vessel anastomosis and to evaluate for stenosis that can be a cause of graft failure. Because there is risk for nephrogenic systemic fibrosis in the setting of renal insufficiency, the use of non-contrast MRA in these patients is helpful. In this study, the ability of two non-contrast MRA methods – 3D radial linear combination balanced SSFP (VIPR-SSFP) and inflow-weighted Cartesian SSFP (IFIR) – to visualize the transplant renal vessels is compared. Twenty-one renal transplant patients were scanned using the VIPR-SSFP and IFIR sequences. Diagnostic efficacy of the sequences was scored using a four point Likert scale according to the following criteria: overall image quality, fat suppression, and arterial/venous visualization quality. Average scores for each criterion were compared using the Wilcoxon signed-rank test. In addition to significantly improved venous visualization, the VIPR-SSFP sequence provided significantly improved fat suppression quality (p < 0.03) compared to IFIR. VIPR-SSFP also identified several pathologies such as renal arterial pseudoaneurysm that were not visible on the IFIR images. However, IFIR afforded superior quality of arterial visualization (p < 0.005). These two methods of non-contrast MR imaging each have significant strengths and are complementary to each other in evaluating the vasculature of renal allografts.  相似文献   

7.
Eu3+-doped (La, Ln) PO4 (Ln = Gd and Y) phosphors were prepared by a facile co-precipitation method. Their structures and luminescent properties under UV excitation were investigated. Structural characterization of the nanostructured luminescence material was carried out with X-ray powder diffraction analysis. Scanning electron microscopy was carried out to understand the surface morphological features and grain sizes with 50–100 nm. It is found that (La, Gd) PO4:Eu3+ phosphors have the same crystal structure as LaPO4:Eu3+, which is monoclinic with a little different lattice parameters. In the case of (La, Y) PO4:Eu3+ phosphors, however, the gradual change from monoclinic to tetragonal structure of host lattice was observed, as the amount of Y ion increased. From the photoluminescence spectra for (La, Ln) PO4:Eu3+ (Ln = Gd and Y), the emission transition 5D0 → 7F1 has been found to be more prominent over the normal red emission transition 5D0 → 7F2. Furthermore, the size influence on the products was discussed. It was observed that the spectral features possess sharp and bright emission for potential applications on the monitors of the television and some other related electronic systems, in observing the images in orange–red color.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号