首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Raman, infrared and 1H-NMR spectra of (CH3)3 -X-Si (CH3)3 (X=O,S,Se,Te) were measured, and the assignment was carried out by comparison with those of the structurally related compounds, (CH3)3 SiCl and (CH3)3 Si-Si (CH3)3. The vibrational spectra of (CH3)3 Si-X-Si (CH3)3 can be interpreted in terms of a non-rigid D3d symmetry with internal rotations, because those of skeletones of the molecules indicate the lack of coincidence between Raman and infrared frequencies. The 1H-NMR spectra also support a non-rigid D3d model, because only one band for CH3 group appears.  相似文献   

2.
Abstract

The Raman and infrared spectra of dimethyl sulfide (CH3?S-CH3) have been assigned in terms of a D3d model1. The structurally related compounds, digermyl sulfide (GeH3?S-GeH3) and methyl germyl sulfide(CH3?S-GeH3) are prepared according to the literature2–4, and their vibrational spectra are measured. The analysis of these spectra comparing with those of CH3?S-CH3 allows us to determine the molecular structures to be D3d for GeH3?S-GeH3 and a C3v for CH3?S-GeH3 with a linear—S—.  相似文献   

3.
An extended complete diagonalization method/microscopic spin-Hamiltonian (CDM/MSH) program has been developed, which is applicable for d3 ions at sites of tetragonal symmetry type I (C4v, D2d, D4, D4h) and trigonal symmetry type I (C3v, D3, D3d). The Hamiltonian includes the spin-spin (SS) and spin-other-orbit (SOO) magnetic interactions besides the spin-orbit (SO) magnetic interaction usually taken into account. Utilizing the extended CDM/MSH program, the optical spectra, the spin-Hamiltonian (SH) parameters of the ground state 4B1, and the splitting δ(2E) of the first excited 2E state for Cr3+ (3d3) ions at C4v symmetry sites in MgO crystals have been successfully investigated. It is found that although the SO magnetic interaction is the most important one, the contributions to the SH parameters and the optical spectra from the SS and SOO magnetic interactions for Cr3+:MgO crystals are appreciable and should not be omitted, especially reaching 27.8% for the zero field splitting parameter D.  相似文献   

4.
Infrared spectra of 1,2‐bis(trifluorosilyl)ethane (SiF3CH2CH2SiF3) were obtained in the vapour and liquid phases, in argon matrices and in the solid phase. Raman spectra of the compound as a liquid were recorded at various temperatures between 293 and 270 K and spectra of an apparently crystalline solid were observed. The spectra revealed the existence of two conformers (anti and gauche) in the vapour, liquid and in the matrix. When the vapour was chock‐frozen on a cold finger at 78 K and annealed to 150 K, certain weak Raman bands vanished in the crystal. The vibrational spectra of the crystal demonstrated mutual exclusion between IR and Raman bands in accordance with C2h symmetry. Intensity variations between 293 and 270 K of pairs of various Raman bands gave ΔH(gauche—anti) = 5.6 ± 0.5 kJ mol−1 in the liquid, suggesting 85% anti and 15% gauche in equilibrium at room temperature. Annealing experiments indicate that the anti conformer also has a lower energy in the argon matrices, is the low‐energy conformer in the liquid and is also present in the crystal. The spectra of both conformers have been interpreted, and 34 anti and 17 gauche bands were tentatively identified. Ab initio and density functional theory (DFT) calculations were performed giving optimized geometries, infrared and Raman intensities and anharmonic vibrational frequencies for both conformers. The conformational energy difference derived in CBS‐QB3 and in G3 calculations was 5 kJ mol−1. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Raman and infrared spectra have been recorded for trimethylarsenic dichloride, dibromide and their deuterated analogs and vibrational assignments were made for the skeletal modes of these compounds. The spectra of the dichloride and its deuterated analog were interpreted in terms of a trigonal bipyramidal structure, D3h symmetry, whereas the spectra of the dibromides were interpreted using the ionic model, [(CH3)3AsBr]+Br, having C3v symmetry. Using a generalized valence force potential field, normal coordinate analyses data were obtained for the dichloride and the dibromide. Included in this data are potential energy distributions for a set of symmetry coordinates. The force fields obtained for the dichloride and dibromide were used to calculate frequencies for the corresponding deuterated compounds. The discrepancies between the observed and calculated frequencies for the deuterated compounds are discussed in terms of the assumptions made.  相似文献   

6.
The B‐band resonance Raman spectra of 2(1H)‐pyridinone (NHP) in water and acetonitrile were obtained, and their intensity patterns were found to be significantly different. To explore the underlying excited state tautomeric reaction mechanisms of NHP in water and acetonitrile, the vibrational analysis was carried out for NHP, 2(1D)‐pyridinone (NDP), NHP–(H2O)n (n = 1, 2) clusters, and NDP–(D2O)n (n = 1, 2) clusters on the basis of the FT‐Raman experiments, the B3LYP/6‐311++G(d,p) computations using PCM solvent model, and the normal mode analysis. Good agreements between experimental and theoretically predicted frequencies and intensities in different surrounding environments enabled reliable assignments of Raman bands in both the FT‐Raman and the resonance Raman spectra. The results indicated that most of the B‐band resonance Raman spectra in H2O was assignable to the fundamental, overtones, and combination bands of about ten vibration modes of ring‐type NHP–(H2O)2 cluster, while most of the B‐band resonance Raman spectra in CH3CN was assigned to the fundamental, overtones, and combination bands of about eight vibration modes of linear‐type NHP–CH3CN. The solvent effect of the excited state enol‐keto tautomeric reaction mechanisms was explored on the basis of the significant difference in the short‐time structural dynamics of NHP in H2O and CH3CN. The inter‐molecular and intra‐molecular ESPT reaction mechanisms were proposed respectively to explain the Franck–Condon region structural dynamics of NHP in H2O and CH3CN.Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
We report a resonance Raman study on free‐base tetraphenylporphine (H2TPP) and its chemically prepared diacid dispersed in polymethylcyanoacrylate (PMCA). Photoexcitation of the neutral porphine by laser light leads irreversibly to the formation of the diacid, with the π‐cation radical as intermediate species. Resonance Raman (RR) spectra of the diacid dispersed in the polymer obtained with 441.6 nm in the wavenumber region of 100–1650 cm−1 are recorded. Wavenumbers with other excitation lines are also reported for the diacid species. Some bands assigned to out‐of‐plane vibrational modes and forbidden under ideal D2h symmetry are also observed in the resonance Raman spectra of the diacid. These bands arise from the out‐of‐plane distortions, which reduce the symmetry of the molecule. These findings are supported by the electronic absorption studies of the diacid in the polymer. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Selected exchange-correlation functionals were employed to study certain radicals for which unrestricted (U) Hartree–Fock and post-Hartree–Fock methods showed spatial symmetry breakings. For AlO, BO2 and BS2 all functionals produced symmetry adapted solutions and predicted geometries and vibrational spectra in good accord with experiment. The USVWN and UB3LYP solutions for the D∞h O–Al–O structure break spin symmetry. Mixing of these spin-unrestricted Kohn–Sham orbitals yielded stable solutions with reasonable geometries and energetics but with large errors for the vibrational spectra. Only UBHandHLYP results in a broken spatial symmetry solution and yields an anomalous vibrational spectrum. The UBLYP solution does not show a tendency to instability and predicts a Dinfin;h O–Al–O species with a 2Πg electronic state.  相似文献   

9.
Abstract

The infrared and Raman spectra of dimethyldithiophosphinate anion (CH3)2PS2 were measured and the vibrational modes for the anion complex were assigned. A Normal Coordinate Analysis in the Modified General Valence Force Field (MGVFF) approximation was carried out assuming C2v symmetry. Ab Initio Calculations at RHF and MP2 level were also carried out for the anion geometry as well as for its frequencies, intensities and force constants.  相似文献   

10.
The polarized Raman spectra of crystalline FeCl3, and of stage 1 and 2 graphite- FeCl3 intercalation compounds have been obtained. The observed FeCl3 derived modes are assigned vibrational species according to the space group C3i2 (R3) for the pure crystal and the D3d layer factor group for the intercalated compounds. Measurements show that FeCl3 intercalated in graphite maintains its layer structure, no evidence for monomeric FeCl3 or dimeric Fe2Cl6 being observed. There is also no evidence for FeCl2 layer stochiometry.  相似文献   

11.
Abstract

The laser Raman spectra of crystalline [(CH3)4N] HgCl3 and [(CH3)4N]2HgCl4 have been studied in the 400–20 cm?1 region. All expected Raman active modes for the HgCl3 ? and HgCl4 ?2 ions are observed and assignments of the vibrational frequencies are made in relation to the structure of the anions.  相似文献   

12.
The lowest infrared active perpendicular fundamental ν9 of disilane has been analysed on a Fourier transform spectrum between 320 and 430?cm?1, at the spectral resolution of 0.0012?cm?1. The rotation–torsion structure of this band is affected by x,y Coriolis interactions with excited torsional levels of the vibrational ground state, correlating with components of 3ν4 and 4ν4 in the high barrier limit. The interaction of ν9 and 4ν4, forbidden in the D3d symmetry limit, is allowed between components of E torsional symmetry under the G36(EM) extended molecular group, because of the large amplitude of the internal rotation motion. We could determine the values of the main vibration–rotation–torsion parameters of ν9, interaction parameters, and the vibrational wavenumbers of the four torsional components of 3ν4 and of the E3d component of 4ν4. The intrinsic torsional splitting of ν9 is found to be smaller than in the ground vibrational state by 0.0066?cm?1, in good agreement with our theoretical predictions. The possibility of observing the effects of D3d-forbidden interactions in the spectra of ethane-like molecules is also discussed.  相似文献   

13.
The infrared and Raman spectra of [N(CH3)4]2ZnCl4?yBry, where y = 0, 2 and 4, have been analyzed with ab initio calculations of the vibrational characteristics of constitutive polyhedra, tetramethylammonium [N(CH3)4]+ and [ZnCl4?xBrx]2? (x = 0, 1, 2, 3 and 4) tetrahedra. The optimized geometries, calculated vibrational frequencies, infrared intensities and Raman activities are calculated using Hartree–Fock and density functional theory B3LYP methods with 3-21G, 6-31G(d) and 6-311G+(d,p) basis sets. Calculation of the root mean square difference δrms between the observed and calculated frequencies allows to give scaling factors and to deduce that the best agreements are obtained by B3LYP/6-311G+(d,p) for [N(CH3)4]+ and B3LYP/3-21G for [ZnCl4?xBrx]2?. The present study establishes a strongly reliable assignment of the vibrational modes of [ZnCl4?xBrx]2? tetrahedra based on comparison between experimental and ab initio calculations, both of the frequencies and the intensities of the Raman signals.  相似文献   

14.
The crystal structure and vibrational spectra of deuterated pyridinium perchlorate (d 5PyH)ClO4 (C5D5NHClO4) are studied by means of neutron diffraction in ambient conditions, X-ray diffraction at high pressures up to 3.5 GPa in the temperature range 297–420 K, and Raman spectroscopy at high pressures up to 5.7 GPa. Deuterated pyridinium perchlorate at ambient conditions has rhombohedral structure with the R3m symmetry (paraelectric phase I). Over the pressure range of 0.5–1.2 GPa, the phase II with monoclinic symmetry Cm exists. At pressure P ~ 1.2 GPa, the phase transition to monoclinic phase III with the Pm symmetry is observed at ambient temperature. The lattice parameters, unit cell volume, and frequencies of internal vibrational modes as functions of pressure are obtained for different phases of deuterated pyridinium perchlorate. The P-T phase diagram of (d 5PyH)ClO4 over the extended pressure and temperature range is discussed.  相似文献   

15.
Raman and infrared spectra are reported for rhodanine, 3‐aminorhodanine and 3‐methylrhodanine in the solid state. Comparisons of the spectra of non‐deuterated/deuterated species facilitate discrimination of the bands associated with N H, NH2, CH2 and CH3 vibrations. DFT calculations of structures and vibrational spectra of isolated gas‐phase molecules, at the B3‐LYP/cc‐pVTZ and B3‐PW91/cc‐pVTZ level, enable normal coordinate analyses in terms of potential energy distributions for each vibrational normal mode. The cis amide I mode of rhodanine is associated with bands at ∼1713 and 1779 cm−1, whereas a Raman and IR band at ∼1457 cm−1 is assigned to the amide II mode. The thioamide II and III modes of rhodanine, 3‐aminorhodanine and 3‐methylrhodanine are observed at 1176 and 1066/1078; 1158 and 1044; 1107 and 984 cm−1 in the Raman and at 1187 and 1083; 1179 and 1074; 1116 and 983 cm−1 in the IR spectra, respectively. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
The vibrational spectra of gaseous and liquid 2‐propanol in the C–H stretching region of 2800 ~ 3100 cm−1 were investigated by polarized photoacoustic Raman spectroscopy and conventional Raman spectroscopy, respectively. Using two deuterated samples, that is, CH3CDOHCH3 and CD3CHOHCD3, the overlapping spectral features between the CH and CH3 groups were identified. With the aid of depolarization ratio measurements and density functional theory calculations, a new spectral assignment was presented. In the gas phase, the band at 2884 cm−1 was assigned to the overlapping of one CH3 Fermi resonance mode and a CH stretching of gauche conformer. The bands at 2917 and 2933 cm−1 were assigned to another two CH3 Fermi resonance modes, but the latter includes weak contribution from CH stretching of trans conformer. The bands at 2950 and 2983 cm−1 were assigned to CH3 symmetric and antisymmetric stretching, respectively. The spectral features of liquid 2‐propanol are similar to those in the gas phase except for the blue shift of CH and the red shift of CH3 band positions, which can be attributed to the intermolecular interaction in the liquid state. The new assignments not only clarify the confusions in previous studies from different spectral methods but also provide the reliable groundwork on spectral application of 2‐propanol in the futures. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
The Raman and infrared spectra of (CH3)2Cd and (CH3)2Zn have been reexamined and are reported along with previously unreported vibrational data for (CD3)2Cd and (CD3)3Zn. The spectra have been analyzed using the double group G362, which has led to some changes in assignments made previously. Comparison is also made with a recent study of (CH3)2Hg and (CD3)2Hg. Fine structure was observed for two of the vibrations of the E1d symmetry species, arising from internal rotation of the methyl groups. This structure has been analyzed using a recently developed theory for molecules of the freely rotating dimethylacetylene type. Problems which arise in the application of this theory have been pointed out, and it is suggested that some additional consideration of the theory may be necessary.  相似文献   

18.
Natural resonance electronic Raman optical activity (ROA) is observed for the first time. Coincidently, the first example of vibrational ROA enhanced by low‐lying electronic transition is reported. These new phenomena were measured using the rare‐earth complex Eu(tfc)3 (+)‐tris[3‐trifluoroacetyl‐D ‐camphorato]europium(III), where electronic resonance occurs between the 532‐nm laser excitation and the 7F15D1 transition of the Eu3+ metal center. Electronic Raman spectra involve the Raman transitions terminating on the low‐lying electronic states of Eu(tfc)3. The observed vibrational ROA spectra are enhanced relative to typical ROA spectra by the proximity of vibrational states of Eu(tfc)3 to its low‐lying electronic states with significant magnetic‐dipole character, whereas the parent vibrational Raman spectra do not appear to be resonance‐enhanced since the 532‐nm vibrational Raman spectrum has similar relative intensities to the corresponding Raman spectrum measured with 1064‐nm laser excitation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
The far-ir and Raman spectra of the tittle compound have been obtained at room and liquid nitrogen temperature. The spectra are consistent with a halogen bridged species and the vibrational modes are assigned in relation to the structure of the dimeric anionic complex. A symmetry lower than D2h is proposed in agreement with preliminary X-ray diffraction results.  相似文献   

20.
Raman and FTIR spectra of CaFeTi(PO4)3 and CdFeTi(PO4)3 are recorded and analyzed. The observed bands are assigned in terms of vibrations of TiO6 octahedra and PO4 tetrahedra. The symmetry of TiO6 octrahedra and PO4 tetrahedra is lowered from their free ion symmetry. The presence of Fe3+ ion disrupts the Ti-O-P-O-Ti chain and leads to the distortion of TiO6 octrahedra and PO4 tetrahedra. The PO43− tetrahedra in both crystals are linearly distorted. The covalency bonding factor of PO43− polyanion of both the crystals are calculated from the Raman spectra and compared to that of other Nasicon-type systems. The numerical values of covalency bonding factor indicates that there is a reduction in redox energy and cell voltage and is attributed to strong covalency of PO43− polyanionin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号