首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The mechanisms related to the initial stages of the nucleation and growth of antimony selenide (Sb2Se3) semiconductor compounds onto the indium-doped tin oxides (ITO) coated glass surface have been investigated using chronoamperometry (CA) technique. The fabrication was conducted from nitric acid bath containing both Sb3+ and SeO2 species at ambient conditions. No underpotential deposition (UPD) of antimony and selenium onto ITO substrate was observed in the investigated systems indicating a weak precursor-substrate interaction. Deposition of antimony and selenium onto ITO substrate occurred with large overvoltage through 3D nucleation and growth mechanism followed by diffusion limited growth. FE-SEM and XRD results show that orthorhombic phase Sb2Se3 particles with their size between 90 and 125 nm were obtained and the atomic ratio for antimony and selenium was 2:2.63 according to the EDX results.  相似文献   

2.
王善禹  谢文杰  李涵  唐新峰 《物理学报》2010,59(12):8927-8933
采用熔体旋甩结合放电等离子烧结(MS-SPS)技术制备了单相n型四元(Bi0.85Sb0.15)2(Te1-xSex)3(x=0.15,0.17,0.19,0.21)化合物,并对所得样品的微结构和热电传输性能进行了系统研究.样品自由断裂面的场发射扫描电子显微镜及抛光面的背散射电子成分分析表明:块体材料晶粒细小,晶粒排列紧密,成分分布均匀且相结构单一,样品中存在大量10—100nm的层状结构.随着Se含量x的增加,样品的电导率和热导率逐渐增加,而Seebeck系数逐渐降低.相比商业应用的区熔材料,MS-SPS方法合成的高Se组成的样品均在425K后表现出更高的ZT值,其中(Bi0.85Sb0.15)2(Te0.83Se0.17)3样品具有最高的ZT值,在360K可达到0.96,并在320—500K均保持较高的ZT值,500K时其ZT值相比区熔材料提高了48%.此外,通过调节Se的含量,可以有效地调控材料的ZT峰值出现的温度段,这对多级或梯度热电器件的制备具有重要意义.  相似文献   

3.
Cu2SnSe3 is an important precursor material for the growth of Cu2ZnSnSe4, an emerging solar cell absorber layer via solid state reaction of Cu2SnSe3 and ZnSe. In this study, we have grown Cu2SnSe3 (CTSe) and Cu2SnSe3-ZnSe (20%) films onto soda-lime glass substrates held at 573 K by co-evaporation technique. The effect of annealing of these films at 723 K for an hour in selenium atmosphere is also investigated. XRD studies of as-deposited Cu2SnSe3 and Cu2SnSe3-ZnSe films indicated SnSe as secondary phase which disappeared on annealing. The direct optical band gap of annealed Cu2SnSe3 and Cu2SnSe3-ZnSe films were found to be 0.90 eV and 0.94 eV respectively. Raman spectroscopy studies were used to understand the effect of ZnSe on the properties of Cu2SnSe3.  相似文献   

4.
V G Bhide  B A Patki 《Pramana》1974,2(5):290-297
The K absorption spectra of zirconium, molybdenum and selenium in ZrSe2 and MoSe2 have been recorded photographically using a Cauchois type bent crystal (mica) spectrograph. The absorption edge shifts are used along with the data for NbSe2 (Bhide and Bahl 1971J. Phys. Chem. Solids 32 1001) to propose bond schemes for these compounds.  相似文献   

5.
We have carried out a series of measurements of angular dependence of solid-state NMR spectrum using single crystal samples on various organic molecular conductors, in order to investigate the natures of the electronic states at low temperatures. We confirmed a charge ordered insulating state in α-(BEDT-TTF)2I3 and large charge disproportionation in the metallic state of this salt. In another charge ordered system, θ-(BEDT-TTF)2RbZn(SCN)4, we observed unusual NMR line broadening, proportional to resonance shift, in the metallic state above the transition. We found that this broadening is due to charge disproportionation, or more correctly, due to the inhomogeneity of local susceptibility at nuclear sites and analyzed its dynamics. We observed similar broadening in various organic molecular conductors as well, such as θ-(BEDT-TTF)2CsZn(SCN)4, an exotic Bechgaad salt, (TMTSF)2FSO3, and λ-type BETS salts, λ-(BETS)2(Fe,Ga)Cl4. We found the mechanism of CD in each system is different, respectively.  相似文献   

6.
Silver antimony selenide (AgSbSe2) thin films were prepared by heating sequentially deposited multilayers of antimony sulphide (Sb2S3), silver selenide (Ag2Se), selenium (Se) and silver (Ag). Sb2S3 thin film was prepared from a chemical bath containing SbCl3 and Na2S2O3, Ag2Se from a solution containing AgNO3 and Na2SeSO3 and Se thin films from an acidified solution of Na2SeSO3, at room temperature on glass substrates. Ag thin film was deposited by thermal evaporation. The annealing temperature was 350 °C in vacuum (10−3 Torr) for 1 h. X-ray diffraction analysis showed that the thin films formed were polycrystalline AgSbSe2 or AgSb(S,Se)2 depending on selenium content in the precursor films. Morphology and elemental analysis of these films were done using scanning electron microscopy and energy dispersive X-ray spectroscopy. Optical band gap was evaluated from the UV-visible absorption spectra of these films. Electrical characterizations were done using Hall effect and photocurrent measurements. A photovoltaic structure: glass/ITO/CdS/AgSbSe2/Al was formed, in which CdS was deposited by chemical bath deposition. J-V characteristics of this structure showed Voc = 435 mV and Jsc = 0.08 mA/cm2 under illumination using a tungsten halogen lamp. Preparation of a photovoltaic structure using AgSbSe2 as an absorber material by a non-toxic selenization process is achieved.  相似文献   

7.
Lithium-rich layered oxide Li1.2Ni0.16Co0.08Mn0.56O2 can be referred as a crystalline mixture of Li2MnO3 and LiNi0.4Co0.2Mn0.4O2 at equal molar ratio. In the paper, the solid state reaction of M(AC)2·4H2O (M = Mn, Co and Ni) and LiOH·H2O has been performed to obtain nanocrystalline Li1.2Ni0.16Co0.08Mn0.56O2 using a small molecular organic acid (i.e., oxalic acid (OA), citric acid (CA) or tartaric acid (TA)) as additive. The introduction of organic acids can help to improve the layered structure and inhibit the particle growth of Li1.2Ni0.16Co0.08Mn0.56O2, and the different organic acids exert distinct influences on the structural and electrochemical properties of Li1.2Ni0.16Co0.08Mn0.56O2. In detail, the nanoparticles obtained in the presence of OA have the smallest average size of 50–150 nm, which correspondingly exhibit the highest initial discharge capacity of 267.52 mAh g−1 at 0.1C and the best high-rate capability (e.g., 152.22 mAh g−1, 5C) when applied as a lithium ion battery cathode. Furthermore, the active substance obtained from TA shows the best cycling stability and a discharge capacity of 202.42 mAh g−1 can be retained after 50 cycles at 0.5C.  相似文献   

8.
The interactions between selenium vapors and coal accessory Ca/Fe-minerals favor selenium emission control by transferring selenium into fly ash during coal combustion. Considering the complicated effects of iron transformation on selenium retention, iron species in fly ashes from seven coal-fired power plants were distinguished and the associations between selenium and iron minerals were assessed. Iron oxides (including Fe3O4, γ-Fe2O3 and ɑ-Fe2O3) were determined as the main form of iron minerals in fly ash. The adsorption of selenium vapors by different iron oxides was conducted at temperatures ranging from 300 to 900 °C and the species of captured selenium were identified. Furthermore, reaction sites on the surfaces of fresh and reacted iron oxides were compared to investigate the mechanism regarding selenium adsorption over these iron oxides, which were further clarified through density functional theory study. The results showed that iron oxides were surely to play a significant role in selenium retention mainly through chemisorption and the reactions probably occurred at temperatures below 900 °C. At 300 °C, ɑ-Fe2O3 had better selenium adsorption performance than Fe3O4/γ-Fe2O3. Regardless of iron species, Fe atoms on iron oxides participated in the selenium adsorption by forming a Se–O–Fe Structure. With temperature increasing, selenium adsorption by Fe atoms was suppressed, which caused a drop off in selenium capture capacity of Fe3O4 and ɑ-Fe2O3. Differently, increasing temperature promoted selenium adsorption over γ-Fe2O3, which owned a high selenium adsorption capacity even at 700 °C. Further analysis confirmed that the presence of O2/H2O(g) in the flue gas contributed to the formation of oxygen vacancies on the surface of γ-Fe2O3 at high temperatures and facilitated selenium vapors to react with Fe atoms.  相似文献   

9.
A novel technique for growth of high quality Cu2ZnSnSe4 (CZTSe) thin films is reported in our work. The CZTSe thin films were fabricated onto Mo layers by co-electroplating Cu-Zn-Sn precursors followed by annealing in the selenium vapors at the substrate temperature of 550 °C. The morphology and structure of CZTSe thin films were characterized using scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and Raman scattering spectrum, respectively. The results revealed that the single phase was in the CZTSe thin films, and the other impurities such as ZnSe and Cu2SnSe3 were not existed though they were difficult to distinguish both from EDS and XRD.  相似文献   

10.
骆杨  段羽  陈平  臧春亮  谢月  赵毅  刘式墉 《物理学报》2012,61(14):147801-147801
材料的迁移率是其关键电学特性之一.有机材料迁移率的研究对于有机电致发光器件、 有机太阳电池、有机薄膜场效应晶体管性能的提高有重要的意义. 应用简单易行的空间电荷限制电流方法,对基于三(8-羟基喹啉)铝(Alq3) 的四种单载流子器件电流密度-电压曲线特性进行研究, 根据空间电荷限制电流模型,拟合出Alq3材料在四种器件中的零场电子迁移率和电场依赖因子,并且给出Alq3电子迁移率随外加偏压的变化趋势. 实验结果表明,顶电极铝蒸镀到缓冲层氟化锂(1 nm)和Alq3 (100 nm)的表面后, 可以明显改善Alq3的零场迁移率和电场依赖因子. 认为产生这种现象的原因是氟化锂可以使铝和Alq3发生络合反应, 形成Li+1Alq-1粒子,形成良好的欧姆接触,使得电子的注入效率大大提高.  相似文献   

11.
Interactions of Indium (In) and silicon (Si) atoms are known to catalyze certain organic chemical reactions with high efficiency. In an attempt of creating a material that manifests the interactions, In implanted SiO2 thin films were prepared by ion beam injection and their catalytic abilities for organic chemical reactions were examined. It has been found that, with an injection energy of approximately 0.5 keV, a thin In film is formed on a SiO2 substrate surface and the In implanted SiO2 thin film can catalyze an organic chemical reaction. It has been also shown that there is an optimal ion dose for the highest catalytic ability in the film preparation process. Thin-film-type catalyzing materials such as the one proposed here may open a new way to enhance surface chemical reaction rates.  相似文献   

12.
Ag2Se, CuSe and PbSe were prepared by irradiating the mixtures of AgNO3, CuI or PbCl2 with selenium in ethylenediamine (en) with ultrasound at 18 kHz, using a commercial ultrasonic cleaner, respectively. X-ray powder diffraction (XRD) patterns and transmission electron microscope (TEM) images show that the products are orthorhombic Ag2Se, hexagonal CuSe and cubic PbSe, respectively, and all are well crystallized in nanometers.  相似文献   

13.
Porous organic carbon-doped titania (C-TiO2) nanomaterials and their composites with Ag nanoparticles (Ag/C-TiO2) were synthesized by an eggshell membrane templating method, and their structural and photocatalytic properties were systematically characterized. These nanomaterials, exhibiting a macroscopic morphology of a thin film, are composed of interwoven tubes, and the tube wall consists of nanocrystals. The doped organic carbon was composed of the active carbon and carbonate species, which could form a layer around the surface of TiO2 nanoparticles, while the silver was incorporated into Ag/C-TiO2 composites as separated Ag nanoparticles. The degradation of methylene blue under visible light irradiation was employed to evaluate the photocatalytic activity of these as-prepared TiO2-based materials. Both C-TiO2 and Ag/C-TiO2 nanomaterials showed higher photocatalytic activity than pure TiO2 material–commercial Degussa P25. These results can be accounted for the coupling effect of the incorporation of carbon species and Ag nanoparticles.  相似文献   

14.
光催化降解有机污染物由于其具有低能耗和绿色环保的特点,已经成为研究的热点. 氧化铋纳米晶体的带隙在2.0∽2.8 eV之间,利用它催化可见光降解有机污染物具有较高的活性,从而引起了越来越多的关注. 尽管近年来已经开发了几种制备Bi2O3基半导体材料的方法,但是仍然难以用简单的方法大规模地制备高活性的Bi2O3催化剂. 因此,开发简单可行的大规模制备Bi2O3纳米晶体的方法对于工业废水处理的潜在应用具有重要意义. 本文通过蚀刻商用BiSn粉末,然后进行热处理,成功地大规模制备了多孔Bi2O3. 获得的多孔Bi2O3在亚甲基蓝(MB)的光催化降解中表现出优异的活性和稳定性. 对该机理的进一步研究表明,多孔Bi2O3合适的能带结构允许生成活性氧物种,例如O2和·OH,可有效降解MB.  相似文献   

15.
A new kind of melting phenomenon which is not based on thermal excitation has been observed. X-ray absorption spectroscopy (XAS) experiments under optical pumping provide a “snap-shot” information on the local structure under excitation. We have studied the local structure of chalcogenide glasses such as vitrious selenium and As2Se3 under optical excitation and confirmed the local melting phenomenon under light illumination at low temperature. The photo-induced nonthermal melting (PNM) in chalcogenide glasses is interpreted as the result of pairing of excited lone pair electrons during the illumination. Trapped states in this photo-assisted metastable phase result in a local structural disorder which is partially quenched at room temperature. The increased short-range disorder causing Coulomb repulsion is the origin of red shift of the absorption coefficient known as the photodarkening effect. We found that the bond alternation of chalcogens occurs during the photo-excitation.  相似文献   

16.
研究了通过有机金属化学气相沉积技术及单源分子前躯体方法制备的Ni/Al2O3纳米复合材料的氢吸附(存储). 在冷壁的有机金属化学气相沉积反应器中,通过降解Ni(acac)2粉末基底上的[H2Al(OtBu)]2制备的Ni/Al2O3纳米复合材料. 通过X射线粉末衍射、扫描电镜、透射电镜以及能量色散型X射线荧光光谱等技术表征该复合材料. 采用自制Sievert's设备研究该复合材料的氢吸附(存储),可以储存约2.9%(重量比)的氢.  相似文献   

17.
An ion layer gas reaction (ILGAR) dip-coating process for the deposition of homogeneous spinel structured Li2CoMn3O8 thin layers has been developed. Thin film cathodes for use in high-energy density lithium batteries with thicknesses of about 200 nm have been prepared. The films were found to be X-ray amorphous after preparation. After annealing at 700°C in air for 2 h, the spinel structure of Li2CoMn3O8 was observed by X-ray diffraction analysis. The composition of the surface was studied by XPS, which indicated enhanced Li and Mn concentrations as a result of the rinsing process and different solubilities of the precursor salts. The electrochemical behavior was investigated by separating the annealed electrode sample from a conventional organic lithium ion-conducting electrolyte by a layer of LiPON solid electrolyte and using elemental lithium as counter electrode. A capacity of 110.8 mAh/g was observed which is related to the valence changes of Mn and Co in the spinel structure.  相似文献   

18.
Sonocatalytic degradation of various organic dyes (Congo Red, Reactive Blue 4, Methyl Orange, Rhodamine B and Methylene Blue) catalyzed by powder and nanotubes TiO2 was studied. Both catalysts were characterized using transmission electron microscope (TEM), surface analyzer, Raman spectroscope and thermal gravimetric analyzer (TGA). Sonocatalytic activity of powder and nanotubes TiO2 was elucidated based on the degradation of various organic dyes. The former catalyst was favorable for treatment of anionic dyes, while the latter was more beneficial for cationic dyes. Sonocatalytic activity of TiO2 nanotubes could be up to four times as compared to TiO2 powder under an ultrasonic power of 100 W and a frequency of 42 kHz. This was associated with the higher surface area and the electrostatic attraction between dye molecules and TiO2 nanotubes. Fourier transform-infrared spectrometer (FT-IR) was used to identify changes that occurred on the functional group in Rhodamine B molecules and TiO2 nanotubes after the reaction. Sonocatalytic degradation of Rhodamine B by TiO2 nanotubes apparently followed the Langmuir-Hinshelwood adsorption kinetic model with surface reaction rate of 1.75 mg/L min. TiO2 nanotubes were proven for their high potential to be applied in sonocatalytic degradation of organic dyes.  相似文献   

19.
Abstract

Basing on “ab-initio” calculations, C3N4 was claimed to be an ultra-hard material with a bulk-modulus close to that of diamond. Five different structural varieties were announced: the graphitic form, the zinc blende structure, the α and β forms of Si3N4 and another form, isostructural with the high pressure variety of Zn2Si04.

Using the same strategy as that developed for diamond or c-BN synthesis, it appears that the graphitic form could be an appropriate precursor for preparing the 3D varieties. Two main problems characterize the C3N4 synthesis: (-) the temperature should be reduced in order to prevent nitrogen loss, (-) the reactivity of the precursors should be improved.

Consequently, we have developed a new process using the solvothermal decomposition of organic precursors containing carbon and nitrogen in the presence of a nitriding solvent. The resulting material, with a composition close to C3N4, has been characterized by different physico-chemical techniques.  相似文献   

20.
报道了以生物质热裂解产物-生物油和生物质炭为原料,利用双固定床反应器和电催化水蒸气重整方法高效制氢过程研究.获得的最大绝对氢产率达到110.9 g H2/1 kg干生物质,气相产物包括72%H2、26%CO2、1.9%CO和痕量的CH4.研究了添加生物质炭对生物油制氢效果的影响,以及重整反应温度、通入催化床的电流等反应条件对生物油和生物质炭制氢效果的影响.结果表明,生物质炭的添加使绝对氢产率增加了大约20%~45%,提  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号