首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This is a report on 31P nmr spectra of phosphoric acid monodecylester, PDE, and 2H quadrupolar splitting of D2O in a lyomesophase developed from n-decylammonium chloride, PDE/H3PO4 and D2O.Polarizing microcopic and 2H nmr studies showed that the mesophase was of lamellar-like structure but alignes as the temperature is increased. As the mesophase contained a minute amount of free H3PO4, the 31P nmr spectra gave a sharp peak and a hump. The latter was interpreted to arise from a slow tumbling process of PDE between different agglomerates in this system.  相似文献   

2.
Composites of Al(H2PO4)3 and H3PO4 were synthesised by soft chemical methods with different Al/P ratios. The Al(H2PO4)3 obtained was found to have a hexagonal symmetry with parameter a = 13.687(3)Å, c = 9.1328(1)Å. The conductivity of this material was measured by a.c. impedance spectroscopy between 100 °C and 200 °C in different atmospheres. The conductivity of pure Al(H2PO4)3 in air is in the order of 10? 6–10? 7 S/cm between 100 and 200 °C. For samples containing small excess of H3PO4, much higher conductivity was observed. The impedance responses of the composites were found to be similar with AlH2P3O10·nH2O under different relative humidity. The conductivity of Al(H2PO4)3–H3PO4 composite with Al/P = 1/3.5 reached 6.6 mS/cm at 200 °C in wet 5% H2. The extra acid is found to play a key role in enhancing the conductivity of Al(H2PO4)3–H3PO4 composite at the surface region of the Al(H2PO4)3 in a core shell type behaviour. 0.7% excess of H3PO4 can increase the conductivity by three orders of magnitude. These composites might be alternative electrolytes for intermediate temperature fuel cells and other electrochemical devices. Conductivity (9.5 mS/cm) changed little, when the sample was held at 175 °C for over 100 h as the conductivity stabilised.  相似文献   

3.
The Cl35 nuclear quadrupole resonance spectra of (CH3NH3)HgCl3 have been measured between -150°C and + 100°C. The spectra clearly show that a structural phase transition of first order takes place around Tc? 60°C. The transition may be related to a disordering of the CH3NH3 groups which are reorienting both above and below Tc. The positive temperature coefficient of the Cl NQR frequency, dv/dT may be also explained by the CH3NH3 motion.  相似文献   

4.
Two different cerium(IV) phosphates have been prepared by ageing at 95 °C an aqueous solution made from Ce(NO3)6(NH4)2, nitric acid, and phosphoric acid with the following conditions: P/Ce=2, [HNO3]=5.8 M and [Ce4+]=0.1 M. The control over the formed solid was achieved through the ageing time. After 18 h, a metastable compound (A), corresponding to Ce(PO4)1.5(H2O)(H3O)0.5(H2O)0.5, is obtained, while after 5 days a stable one (B), corresponding to Ce(PO4)(HPO4)0.5(H2O)0.5, is recovered. Both solids exhibit a P/Ce ratio of 1.5. Their structures, 31P solid state NMR, and thermal behaviors are compared.  相似文献   

5.
Abstract

Optical absorption spectrum of cobalt doped MgNH4PO4 · 6H2O (struvite) is investigated in UV-VIS-NIR regions. The spectrum in UV-VIS-NIR region is attributed to Co2+ in octahedral symmetry whereas the IR spectrum is attributed to vibrations due to PO4 3-, NH4 + and H2O. The following crystal field (Dq) and interelectronic repulsion (B, C) parameters are evaluated: Dq = 940cm?1, B = 870cm?1 and C = 3970cm?1.  相似文献   

6.
7.
The composite materials Cs(HSO4)1?x (H2PO4) x were investigated by X-ray phase analysis, differential scanning calorimetry, nuclear magnetic resonance (NMR) relaxation, pulsed field gradient NMR (PFG-NMR) and impedance spectroscopy. Three composite materials types x = 0.1 ÷ 0.3 mixture CsHSO4, α-Cs3(HSO4)2(H2PO4), β-Cs3(HSO4)2.5(H2PO4)0.5—compositions of area I; x = 0.4 ÷ 0.5 mixture α-Cs3(HSO4)2(H2PO4) and Cs2(HSO4)(H2PO4)—compositions of area II; x = 0.6 ÷ 0.9 mixture Cs2(HSO4)(H2PO4) and CsH2PO4—compositions of area III, were synthesized. The phase transition temperature from the low-to-high conductive phase for obtained composite materials is notably below (about 100 °C) than that for the individual components. The proton self-diffusion coefficients measured by PFG-NMR are lower than the diffusion coefficients calculated from proton conductivities data. The correlation times τ d controlling the 31P–1H magnetic dipole–dipole interaction were calculated according to data of the spin–lattice relaxation on 31P nuclei. The self-diffusion coefficients estimated from the Einstein equation are in good agreement with the experimental self-diffusion coefficients measured by PFG-NMR. It confirms the fact that the proton mobility is caused by the rotation of PO4 anion tetrahedra.  相似文献   

8.
Orthorhombic CsH2PO4 undergoes a ferroelectric transition at Tc = ?119.5°C, whereas the ferroelectric transition temperature in isomorphous CsD2PO4 is Tc = ?5.55°C. The transitions are of first order in both cases. The rather large isotope effect demonstrates the importance of the OHO bonds in the transition mechanism.  相似文献   

9.
The spin Hamiltonian parameters (SHPs) and the local structures for impurity W5+ in the Zn3(PO4)2ZnO nanopowders doped with WO3 under different concentrations are theoretically investigated using the perturbation calculations of these parameters. The exponential functions of the related quantities (cubic field parameter Dq, covalency factor N, relative tetragonal compression ratio τ and core polarisation constant κ) of concentration x with totally four adjustable coefficients a, b, c and d are adopted to fit the concentration dependences of the experimental d-d transition bands and SHPs. The impurity W5+ centres demonstrate moderate tetragonal compression ratios τ (~3.1%) due to the Jahn–Teller effect. With the increase of WO3 concentration, Dq and N show moderately decreasing rules, while τ and κ exhibit slightly and moderately increasing tendencies with x, respectively. The mechanisms of the above concentration dependences of these quantities are analysed from the modifications of the local crystal-field strength and electron cloud density around the impurity W5+ with the variation of x. Present theoretical studies would be useful to the exploration of the structural properties and optical applications for WO3 doped Zn3(PO4)2ZnO nanopowders.  相似文献   

10.
The crystal structure of synthetic ferrous hureaulite, Fe5 2+ (H2O)4(PO4H)2(PO4)2, was refined from single-crystal X-ray data. It is monoclinic, space group C2/c, with a=17.487(4), b=9.017(2), c=9.338(2) Å, β=96.27(3)°, V=1463.6(6) Å3, Z=4 and D calc=3.327 g/cm3. This end member of the hureaulite series was crystallized under distinctly acidic conditions, by a method that gives perfect crystals, large enough for X-ray single crystal studies. The main feature of the hureaulite structure is that it has an equal number of normal (PO4)3+ and acid (PO4H)2+ tetradentate groups. These are centered on Fe2+ atoms and share corners with edge-linked octahedra, forming pentamer units. The five Fe2+ atoms are distributed on three distinct sites in these units. This can be directly observed in the Mössbauer spectrum at 295 K, which contains three doublets whose relative intensities correspond to the 1:2:2 distributions of crystallographic sites.  相似文献   

11.
The (PO4)3? units in a CsH2PO4 (CDP) crystal were replaced in a small fraction of sites by (CrO4)3? groups and the EPR of the Cr5+ center was investigated. Splitting of the EPR line appears at T1c=245 K, 91 K higher that the ferroelectric transition temperature Tc=154 K. The electronic wave function of Cr5+ (3d1) is identified as dx2?y2. The dx2?y2 function couples with the near protons and the reorientation of this unit in the two possible configurations occurs in the paraelectric phase and breaks the symmetry far above Tc. The observed correlation time 10?9 sec and associated activation energy ΔU=0.215 eV are discussed.  相似文献   

12.
《Solid State Ionics》2006,177(3-4):237-244
Ongoing studies of the KHSeO4–KH2PO4 system aiming at developing novel proton conducting solids resulted in the new compound K2(HSeO4)1.5(H2PO4)0.5 (dipotassium hydrogenselenate dihydrogenphosphate). The crystals were prepared by a slow evaporation of an aqueous solution at room temperature. The structural properties of the crystals were characterized by single-crystal X-ray analysis: K2(HSeO4)1.5(H2PO4)0.5 (denoted KHSeP) crystallizes in the space group P 1¯ with the lattice parameters: a = 7.417(3) Å, b = 7.668(2) Å, c = 7.744(5) Å, α = 71.59(3)°, β = 87.71(4)° and γ = 86.04(6)°. This structure is characterized by HSeO4 and disordered (HxSe/P)O4 tetrahedra connected to dimers via hydrogen bridges. These dimers are linked and stabilized by additional hydrogen bonds (O–H–O) and hydrogen bridges (O–H…O) to build chains of dimers which are parallel to the [0, 1, 0] direction at the position x = 0.5.The differential scanning calorimetry diagram showed two anomalies at 493 and 563 K. These transitions were also characterized by optical birefringence, impedance and modulus spectroscopy techniques. The conductivity relaxation parameters of the proton conductors in this compound were determined in a wide temperature range. The transport properties in this material are assumed to be due to H+ protons hopping mechanism.  相似文献   

13.
X-ray diffraction data from a solution of Mg(H2PO4)2 were examined. The experimental distribution curve shows peaks at about 2.10, 2.7–2.9, 3.6, 3.9 and 4.25 Å. The 3.6 Å peak reveals the formation of inner sphere magnesium-phosphate complexes Mg(H2O)6-z(H2PO4)+2-zz, in which oxygens from phosphate groups substitute z water molecules of the hydrated Mg(H2O)2+6 ions. Least squares refinements of the i(s) curve are consistent with a structural unit in which the phosphate tetrahedron shares a corner with one magnesium octahedron with MgOP angle of 147 deg. Each phosphate ion interacts with about eight water molecules.  相似文献   

14.
《Solid State Ionics》2006,177(26-32):2421-2424
Mixtures of CsHSO4 and CsH2PO4 were mechanochemically treated using a planetary type of ball mill. The changes in structure and proton conductivity of the solid acid compounds with the treatment have been investigated. Cs3(HSO4)2(H2PO4) and Cs5(HSO4)3(H2PO4)2 were formed during milling. The mechanochemically treated composite consisting of Cs3(HSO4)2(H2PO4) and Cs5(HSO4)3(H2PO4)2 showed higher conductivity than the untreated mixture. In addition, a high temperature phase of Cs2(HSO4)(H2PO4) was generated from the composite at around 100 °C on heating. Conductivity of the mechanochemically treated composite significantly increased at temperatures around 90 °C on heating. The value becomes 2 × 10 3 S cm 1 at around 180 °C. On the other hand, no steep decrease is observed on cooling. The activation energies of the mechanically milled sample with high conductivities were estimated to be about 0.3 eV for both heating and cooling processes. The relatively high proton conductivity and a low activation energy for the proton conduction should be ascribed to the presence of the high temperature phase of Cs2(HSO4)(H2PO4).  相似文献   

15.
《Applied Surface Science》1988,32(3):296-308
The structures and the dehydration processes of phosphates, formed on galvanized steel sheets treated in polycationic solutions containing Zn2+, Ni2+ and Mn2+ as dihydrogenophosphates, are studied using differential and gravimetric thermal analysis (DTA, TGA), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The compounds constituting the phosphated layers, and the crystals precipitated in a stove at 70° C from the same solutions, are structurally substituted-hopeites, (Zn, Mn, Ni)2(PO4)2·4H2O. Their thermal behaviour is strongly influenced by the presence of Ni2+ and Mn2+ ions. The dihydrate (Zn3(PO4)2·2H2O), whose structure conformation has been determined at first, is identified as the main component in the dehydration products of these compounds. The knowledge of the dihydrate conformation allows the understanding of the specificity of the dehydration processes of substituted hopeites whose transformation temperatures and dehydration modes depend on the nature of the substituting cations.  相似文献   

16.
Mössbauer studies on Fe(ClO4)2(H2O)6 salt showed anomalous quadrupole splitting around (230 ± 15)°K which we have established to be due to a new type of phase transition from pseudohexagonal to monoclinic system. Exactly similar type of transition was observed magnetically in all the isomorphous Ni2+, Co2+ and Mn2+ perchlorate hexahydrate single crystals at different critical temperatures.  相似文献   

17.
《Solid State Ionics》1988,26(3):229-235
Amorphous LiZr2(PO4)3 has been prepared at room temperature starting from aqueous solutions of ZrOCl2, H3PO4, and LiOH and then crystallized by heating at temperatures between 600 and 900°C. The material obtained at 900°C has been characterized by X-ray powder diffractometry, DSC analysis, and ac conductivity. It is monoclinic from 20 up to about 300°C and orthorhombic at higher temperatures. A change in the activation energy for conduction (from 0.79 to 0.43 eV) and a weak endothermic effect (0.9–1.7 cal/g) are associated with the phase transition. The ac conductivity of sintered pellets is, on average, 7×10−4 S cm−1 at 300°C.  相似文献   

18.
R. Ruffo  C. M. Mari  M. Catti 《Ionics》2001,7(1-2):105-108
In order to develop new electrolytes for all-solid-state rocking chair lithium batteries, the NASICON-type compounds Li2FeZr(PO4)3 and Li2FeTi(PO4)3 were investigated by powder X-ray diffraction technique and impedance spectroscopy. Li2FeZr(PO4)3 is orthorhombic Pbna (a=8.706(3), b=8.786(2), c=12.220(5) Å) and Li2FeTi(PO4)3 is orthorhombic Pbca (a=8.557(3), b=8.624(3), c=23.919(6) Å). They show no phase transitions from RT to 800 °C. In the same temperature range logσT vs. 1/T show no slope variations. The activation energies for the ionic conductivity were 0.62 and 0.64 eV for Li2FeTi(PO4)3 and Li2FeTi(PO4)3, respectively. In order to better evaluate the present results they were compared with those of α and β-LiZr2(PO4)3 phases, which were also prepared and characterised. A change of activation energy from 0.47 eV to 1.03 eV was observed in the case of β phase, at about 300 °C; attributed to the β (orthorhombic) ? β′ (monoclinic) phase transition. In the α phase the activation energy 0.47 eV in the temperature range 150 – 850 °C. The Li2FeZr(PO4)3 and Li2FeTi(PO4)3 compounds can be interesting for applications as solid electrolytes in high temperature (>300 °C) lithium batteries.  相似文献   

19.
ABSTRACT

The g factors and local structures for Cu2+ in the ZnX (X = O, S and Se) nanocrystals at room temperature are theoretically investigated by the perturbation calculations for a tetragonally distorted tetrahedral 3d9 cluster in a consistent way, and the isotropic g factor is predicted for the ZnS:Cu2+ nanocrystals at room temperature. The bond angles θ between the four equivalent Cu2+?X2? bonds and the C4 axis are found to be about 1.26°, 1.24° and 1.07°, respectively, larger in the ZnO, ZnS and ZnSe nanocrystals than that (θ0 ≈ 54.74°) for an ideal tetrahedron, inducing tetragonally compressed tetrahedra. The declining tendency (ZnO > ZnS > ZnSe) of the tetragonal angular distortion Δθ (= θ ? θ0) can be ascribed to the decreasing strength of the dynamic Jahn–Teller effect via the vibration interactions of the [CuX4]6? groups due to the weakening Cu2+?X2? bonding. The isotropic g factors are attributable to the appropriate Δθ due to the dynamic Jahn–Teller effect and the internal stress. The slightly increasing (ZnO < ZnS < ZnSe) g factors can be illustrated by the declining cubic field parameter Dq, angular distortion Δθ and covalency factor N of the systems.  相似文献   

20.
Crystals of barium tetrakis(maleate) dihydrate [Ba4(C4H2O4)4]?2H2O are grown in gelated hydrosilica matrix. Single crystal X-ray diffraction studies show that the crystal system is monoclinic with space group P21/c. The unit cell dimensions are a=9.3721(2)  Å, b=20.5880(7)  Å, c=14.0744(4) Å, α=γ=90°, β=90.289(2)°. Powder XRD studies confirmed the single phase nature of the grown crystals. The FTIR data is in conformity with the XRD results. The TG–DTA curves of the material indicate a three-step thermal decomposition. The response of the dielectric properties in the temperature range 30 °C to 500 °C is correlated with the TG–DTA results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号