首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrate a gain-switched Fe:ZnSe laser pumped by a 2958 nm pulsed Ho,Pr:LLF laser. The maximum single pulse energy is 16.4uJ with a minimum pulse duration of 13.9 ns at the pulse repetition frequency of1 Hz when the Fe:ZnSe crystal is cooled to 77 K by liquid nitrogen, corresponding to a slope efficiency of 22.9%.The central wavelength and FWHM linewidth are 3957.4 nm and 23.2 nm, respectively. The output energy monotonically decreases as the crystal temperature increases in the range 77–293 K.  相似文献   

2.
LD-pumped passively Q-switched red laser at 660 nm   总被引:1,自引:0,他引:1  
A laser diode (LD) pumped Nd:YAG red pulse laser at 660 mn was presented by V:YAG passively Q-switching and LBO intracavity frequency doubling. With 1.6-W incident pump power, average output power of 46-mW, pulse duration (FWHM) of 23.3 ns, pulse repetition rate of 21.6 kHz, peak power of 91.4 W, and single pulse energy of 2.13 μJ were obtained. The beam quality factor M2 was less than 1.2. The fluctuations of pulse energy and repetition rate were less than 3% in 4 hours. The pulsed laser at 660 nm is expected to be used as the pump source of Cr3+:doped crystal to obtain the gain-switched tunable laser.  相似文献   

3.
An Er3 /Yb3 phosphate laser glass was fabricated and characterized. According to McCumber theory, the stimulated emission cross-section of Er3 ions at 1533 nm calculated by absorption spectrum was 0.84×10-20 cm2, and the fluorescence lifetime of 4I13/2 level was 8.5 ms. Continuous wave (CW) laser operation of this Er3 /Yb3 phosphate glass pumped by laser diode (LD) was demonstrated at room temperature. The maximum output power of 80 mW and slope efficiency of 16.5% were obtained.  相似文献   

4.
An all-fiber type Er~(3+)/Yb~(3+) co-doped fiber laser   总被引:4,自引:0,他引:4  
In this paper, a distributed Bragg reflection (DBR) type Er~(3+)/Yb~(3+) co-doped fiber laser of high output power and high slope efficiency was developed. Its gain medium was a 4.45-m-long Er3+/Yb3+ co-doped fiber. When it was pumped by a 1064-nm Nd:YAG, the linewidth of output laser was measured as 0.072 nm by 3 dB and 0.192 nm by 25 dB at 1552.08 nm. The maximum output power was measured as 69 mW. Its power stability was < 5%, side mode suppression ratio was 59 dB, and the output wavelength stability was ±0.01 nm. The laser had a threshold of 12 mW and a slope efficiency of 22%.  相似文献   

5.
A high-efficiency eye-safe Raman laser was demonstrated by use of the third Stokes radiation in a Ba(NO_3)_2 crystal pumped by a 1064-nm Nd:YAG laser. The output wavelength of the Raman laser was 1598.5 nm with a full-width at half-maximum (FWHM) of 1.5 nm. With an incident pump energy of 140 mJ, a maximum of 18-mJ Raman output energy was generated at a repetition rate of 30 Hz, corresponding to an optical-to-optical conversion efficiency of 12.9%. The Raman pulse duration was shortened to 2.9 ns compared with that of the pump pulse of 19.3 ns. The eye-safe solid-state Raman laser is expected to have wide applications in range-finding, telemetry, laser radar, and other aspects.  相似文献   

6.
We report pulsed laser diode(LD)end-pumped acoustic Q-switched Tm:YAG laser,Tm:LuAG laser,and Tm:LuYAG laser and the physical properties and spectra of Tm:YAG,Tm:LuAG,and Tm:LuYAG are analyzed.The Tm:LuYAG laser is pumped by 785-nm and 788-nm pulses separately,and is compared with Tm:YAG laser.Different output energy values and output wavelengths of Tm:LuAYG lasers pumped by LDs with different wavelengths are obtained and compared with each other.When the repetition frequency is 100 Hz,the pulsed Tm:YAG laser has single pulse energy of 15.9 mJ,pulse width of 126.7 ns,and the center wavelength of 2013.36 nm,and the pulsed Tm:LuAG laser possesses single pulse energy of 11.8 mJ,pulse width of 252.4 ns,and the center wavelength of 2023.65 nm,and the pulsed Tm:LuYAG laser output energy values are 12.32 mJ and 12.25 mJ with the slope efficiencies of 12.5%and 11.85%,the center wavelengths of 2017.89 nm and 2027.11 nm,respectively,while the pump sources are 785-nm and 788-nm pulsed LDs,respectively.  相似文献   

7.
An all-solid-state quasi-continuous-wave dispersion cavity tunable Ti:sapphire laser pumped by a laser diode pumped frequency-doubled Nd:YAG laser is reported. Using a dense flint glass prism as the dispersion element, a tuning range from 730 to 880 nm with the linewidth of 3 nm and the pulse width of 17.2 ns was obtained. The maximum output, power of this laser system was 5.6 W at 786.3 nm corresponding to an optical-to-optical conversion efficiency of 25.5% under the pump power of 22 W.  相似文献   

8.
We demonstrate a narrow-linewidth linearly polarized 1645 nm Er:YAG laser, directly diode-pumped by a fibercoupled continuous-wave laser diode at 1532 nm. Passive Q-switching is realized by a few-layer graphene saturable absorber. A maximum polarized average output power of 3.13 W is achieved at 23.28 W incident pump power. A pulse energy of as much as 58.8 μJ and pulse width of 4.21 μs are yielded at a 53.2 k Hz pulse repetition rate. The spectrum and linewidth of the output beams are measured to be 1645.34 and 0.05 nm, respectively.This laser can be useful in the detection of atmosphere pollutants.  相似文献   

9.
We report a continuous-wave Er:ZBLAN fiber laser with the operation wavelength reaching 3.68 μm.The midinfrared Er:ZBLAN fiber laser is pumped with the dual-wavelength sources consisting of a commercial laser diode at 970 nm and a homemade Tm-doped fiber laser at 1973 nm.By increasing the launched pump power at1973 nm,the laser wavelength can be switched from 3.52 to 3.68 μm.The maximum output power of 0.85 W is obtained with a slope efficiency of 25.14% with respect to the 1973 nm pump power.In the experiment,the laser emission at 3.68 μm is obtained with a significant power of 0.62 W,which is the longest emission wavelength in free-running Er:ZBLAN fiber lasers.  相似文献   

10.
A high-pulse-energy high-beam-quality tunable Ti:sapphire laser pumped by a frequency-doubled Nd:YAG laser is demonstrated.Using a fused-silica prism as the dispersion element,a tuning range of 740-855 nm is obtained.At an incident pump energy of 774 mJ,the maximum output energy of 104 mJ at 790 nm with a pulse width of100 μs is achieved at a repetition rate of 5 Hz.To the best of our knowledge,it is the highest pulse energy at790 nm with pulse width of hundred micro-seconds for an all-solid-state laser.The linewidth of output is 0.5 nm,and the beam quality factor M~2 is 1.16.The high-pulse-energy high-beam-quality tunable Ti:sapphire laser in the range of 740-855 nm can be used to establish a more accurate and consistent absolute scale of second-order optical-nonlinear coefficients for KBe_2BO_3F_2 measured in a wider wavelength range and to assess Miller's rule q uantitatively.  相似文献   

11.
We demonstrate a high-pulse-energy, short-pulse-width passively Q-switched(PQS) Nd:YAG∕V3t:YAG laser at 1.3 μm, which is end-pumped by a pulsed laser diode. During the PQS regime, a maximum total output pulse energy of 3.3 m J is obtained under an absorbed pump pulse energy of 21.9 m J. Up to 400 μJ single-pulse energy is realized with the shortest pulse width of 6.16 ns and a pulse repetition frequency of 34.1 k Hz,corresponding to a peak power of 64.9 k W. The high-energy laser pulse is operated in the dual wavelengths of 1319 and 1338 nm, which is a potential laser source for THz generation.  相似文献   

12.
A high-efficiency eye-safe Raman laser was demonstrated by use of the third Stokes radiation in a Ba(NO3)2 crystal pumped by a 1064-nm Nd:YAG laser. The output wavelength of the Raman laser was 1598.5 nm with a full-width at half-maximum (FWHM) of 1.5 nm. With an incident pump energy of 140 Mj, a maximum of 18-Mj Raman output energy was generated at a repetition rate of 30 Hz, corresponding to an optical-to-optical conversion efficiency of 12.9%. The Raman pulse duration was shortened to 2.9 ns compared with that of the pump pulse of 19.3 ns. The eye-safe solid-state Raman laser is expected to have wide applications in range-finding, telemetry, laser radar, and other aspects.  相似文献   

13.
We demonstrate a Fe:ZnSe laser gain-switched by a 2.9 m ZnGeP_2 optical parametric oscillator under pulse repetition frequency of 1 kHz at liquid nitrogen temperature of 77 K. The maximum output power is 63 m W with pulse duration of 34.4 ns. The wavelength covers 3686.6–4088.6 nm and centers at 3897.7 nm. The output power decreases with increasing the temperature of the crystal in 77–222 K.  相似文献   

14.
A diode-pumped Tm:YLF passively Q-switched laser at 2 μm was first demonstrated by using graphene oxide(GO) as a saturable absorber(SA).In this letter,continuous-wave(CW) laser and pulse laser performances were studied meticulously and systematically.It reasonably showed the dependence of the pulse duration,pulse energy,and pulse repetition rate on the absorbed power.A maximum repetition rate of 38.33 kHz and a single pulse energy of 9.89 μJ were obtained.  相似文献   

15.
We report a continuous-wave (CW) 2.1-μm Ho:YAG laser operating at room temperature pumped by a diode-pumped 1.94-μm Tm:YAP laser.The maximum output power of 1.5 W is obtained from Ho:YAG laser,corresponding to Tm-to-Ho slope efficiency of 17.9%and diode-to-Ho conversion efficiency of 5.6%.  相似文献   

16.
We demonstrate the continuous wave p-polarized single longitudinal mode (SLM) operation of an Er:YAG laser at 1617.6nm pumped by a diode-laser with three inserted Fabry-Perot (FP) etalons at room temperature. The Brewster angle inserted FP is applied to obtain the p-polarized laser. For free running, the maximum output power is 570 m W with a pump power of 12.5 W. An incident pump power of 12.5 W is used to generate the maximum p-polarized single longitudinal mode output power of 78.5 m W, corresponding to a slope efficiency of 1.6% and an optical-to-optical efficiency of 0.61%. The beam quality M2 is measured to be 1.15 at the highest SLM output power. This stable polarized SLM oscillation is encouraging due to its application for an injection-locked system used as a master laser.  相似文献   

17.
A high-power, high-energy Ho:YAG oscillator resonantly pumped by a Tm-doped fiber laser is presented. A maximum continuous output power of 38 W with a slope efficiency of 51.9% is achieved at the wavelength of 2.09 μm, and M2≈1.48. In the Q-switching regime, the maximum pulse energy of 12.8 mJ, corresponding to a 514.5 kW peak power, is obtained at the pulse repetition frequency of 1 kHz. Furthermore, the thermal lens effect of the system is studied theoretically, and the radius of the transverse electromagnetic(TEM_(00)) mode of the laser crystal under different pump powers is given.  相似文献   

18.
A power-scaled laser operation of Pr:YLi F4(YLF)crystal at 720.9 nm pumped by a 443.6 nm laser diode(LD)module was demonstrated.The 20 W module was used to pump the Pr:YLF crystal,and a maximum output power of 3.03 W with slope efficiency of 30.04%was obtained.In addition,a 5 W blue LD was also used to pump the Pr:YLF laser,and a maximum output power of 0.72 W was obtained at room temperature.The output power was limited by the wavelength mismatch between the single-emitter LD and the absorption peak of the crystal.  相似文献   

19.
A high pulse repetition frequency(PRF), high energy Ho:YAG laser directly pumped by a Tm-doped fiber laser and its application to a mid-infrared ZnGeP_2(ZGP) optical parametric oscillator(OPO) is demonstrated.The maximum polarized 2.09 μm laser pulse energy is 13.46 mJ at a PRF of 1 k Hz. The corresponding peak power reaches 504 kW. In a double-resonant ZGP-OPO, a maximum mid-infrared laser pulse energy of 1.25 m J,corresponding to a peak power of 79 kW, is accomplished at a PRF of 3 kHz. The nonlinear conversion efficiency reaches 41.7%. The nonlinear slope efficiency reaches 53.3%.  相似文献   

20.
We report on a high energy, high repetition rate Ho:YAG master oscillator and power amplifier (MOPA), res- onantly dual-end-pumped by Tm:YLF lasers at room temperature. At the pulse repetition frequency of i kHz, we demonstrate a maximum energy of 30mJ per pulse with a 28.2ns pulse width in a Ho:YAG oscillator system resonantly double-end-pumped by Tm:YLF lasers. A maximum energy of 52mJ per pulse with a 30.5ns pulse width is achieved in the Ho: YA G amplifier, corresponding to a peak power of approximately 1.7 MW. The output wavelength is at 2090.6nm and 2096.9nm, and a beam quality factor of M2-2.1 is achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号