首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple spring model for molecular vibrations, which uses Cartesian co-ordinates for both longitudinal and transverse displacements, is applied to non-centrosymmetric linear triatomic molecules. Analytical expressions for the stretching and bending mode frequencies are obtained, which are equivalent to those derived by conventional methods. For most molecules, the effects of the interaction between the outside atoms are shown to be negligible, but for N2O, complex solutions are obtained unless this is included. The validity of the model is demonstrated by the satisfactory agreement between calculated and observed frequencies of isotopic species. For N2O, frequency shifts resulting from isotopic substitution are explained by reference to the calculated eigenvectors.  相似文献   

2.
The vibrations of pyramidal AB3 type molecules with C3v symmetry are analyzed in terms of Cartesian co-ordinates, and analytical expressions for the four normal mode frequencies are derived as functions of two stretching and two bending force constants. Optimized values of these force constants are obtained for a number of tri-hydride and tri-halide molecules by substitution of available spectroscopic and geometric data. The physical validity of the model is confirmed by comparing the calculated and observed frequencies of several isotopic species.  相似文献   

3.
The vibrations of linear ABC2 type molecules with C∞V point group are analysed in terms of Cartesian co-ordinates. Algebraic expressions for the three stretching and two bending normal mode frequencies are derived in terms of longitudinal and transverse force constants, atomic masses and bond lengths. Values of non-valence interaction parameters are transferred from A2B2 (D∞h) molecules, and values of the principal force constants are adjusted to reproduce the observed frequencies for a number of asymmetric halogen derivatives of acetylene. Normal mode frequencies of various isotopic species are also calculated. The nature of the computed eigenvectors for these molecules is briefly discussed. It is found that the carbon-carbon and carbon-hydrogen valence interactions remain approximately constant for these molecules, whereas the carbon-halogen bonds show a weakening trend with increasing halogen mass.  相似文献   

4.
A short-range force constant model has been applied for the first time to investigate the phonons in α-NaAlH4 having body centered tetragonal Scheelite structure .The normal symmetry coordinates for the Scheelite structure were computed to investigate the phonons at the zone center. The phonons for α-NaAlH4 have been calculated involving five stretching and two bending force constants .The calculated Raman frequencies exhibit good agreement with the available measured values. The infrared frequencies have been assigned proper modes for the first time.  相似文献   

5.
Two potential models for acetylene are developed and tested by comparison between variational calculations for the stretching vibrational term values and available spectroscopic data. The first model based on local bond potentials with harmonic interbond coupling gives root mean square deviations of 6 cm?1 for C2H2 and 3 cm?1 for C2D2. The second model is more ambitious, being designed to reproduce the dissociation characteristics of the molecules, and the calculated root mean square deviations from the experimental vibrational term values are larger, 32 cm?1 for C2H2 and 24 cm?1 for C2D2. The eigenvalue spectrum of C2H2 is shown to differ from that of C2D2 in showingmarked local mode features and this difference in behaviour is underlined by means of a correlation diagram. Finally it is shown how the known normal mode frequencies and anharmonic constants may be introduced into a simple model in order to predict the excited term values of C2H2, again with a root mean square deviation of 6 cm?1.  相似文献   

6.
ABSTRACT

Raman spectra of the uranyl-containing mineral coconinoite, Fe2Al2(UO2)2(PO4)4(SO4)(OH)2 · 20H2O, are presented and compared with the mineral's infrared spectra. Bands connected with (UO2)2+, (PO4)3?, (SO4)2?, (OH)?, and H2O stretching and bending vibrations are assigned. Approximate U?O bond lengths in uranyl, (UO2)2+, and O?H…O hydrogen bond lengths are calculated from the wavenumbers of the U?O stretching vibrations and (OH)? and H2O stretching vibrations, respectively, and compared with published data for similar natural and synthetic compounds.  相似文献   

7.
Abstract

The complexes between H2O, D2O, HOD and pyridine have been studied in 1,2-dichloroethane by FT-IR spectrometry. Equal splittings of the stretching bands of H2O and D2O about their uncoupled vibrations are observed. The coupling between the asymmetric and symmetric vibrations reaches a value of zero when the band separation is greater than 500 cm?1 for the OH vibrations and 365 cm?1 for the OD vibrations. The vOH stretching frequencies of the HOD ‥ complexes and the vOD stretching frequencies of the DOH‥ complexes increase by complex formation. These features are explained by an electronic reorganization within the hydrogen bond.  相似文献   

8.
Raman spectra of the uranyl titanate mineral betafite were obtained and related to the mineral structure. A comparison is made with the spectra of uranyl oxyhydroxide hydrates. Observed bands are attributed to the (UO2)2+ stretching and bending vibrations, U–OH bending vibrations and H2O and (OH)? stretching, bending and libration modes. U–O bond lengths in uranyls and O?H···O bond lengths are calculated from the wavenumbers assigned to the stretching vibrations. Raman bands of betafite are comparable with those of the uranyl oxyhydroxides. The mineral betafite is metamict as is evidenced by the intensity of the UO stretching and bending modes being of lower intensity than expected and by bands that are significantly broader.  相似文献   

9.
A short-range force constant model has been applied for the first time to investigate the Raman and the infrared frequencies in Y2Ru2O7 pyrochlore in its cubic phase of space group Fd3m. The calculations of zone center phonons have been made with four stretching and three bending force constants. The calculated values of Raman and infrared frequencies are in good agreement with the observed ones.  相似文献   

10.
Raman spectrum of burgessite, Co2(H2O)4[AsO3OH]2· H2O, was studied, interpreted and compared with its infrared spectrum. The stretching and bending vibrations of (AsO3) and As‐OH units, as well as the stretching, bending and libration modes of water molecules and hydroxyl ions were assigned. The range of O H···O hydrogen bond lengths was inferred from the Raman and infrared spectra of burgessite. The presence of (AsO3OH)2− units in the crystal structure of burgessite was proved, which is in agreement with its recently solved crystal structure. Raman and infrared spectra of erythrite inferred from the RRUFF database are used for comparison. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Equilibrium nuclear configurations of the planar formaldehyde homodimer (H2CO)2 and the (H2CO)2···HF complex are determined in the MP2/6-311++G(3df, 3pd) approximation taking into account the superposition error of basis sets of monomers. Harmonic values of the frequencies and intensities of fundamental transitions between vibrational states of these hydrogen-bonded complexes were calculated using the Gaussian 09 package of programs. Anharmonic values of the frequencies and intensities of the ν(H–F) stretching vibration and several intermolecular vibrations in the (H2CO)2···HF trimer were obtained from variational solutions of one-, two-, and three-dimensional vibrational Schrödinger equations. The anharmonic influence of the C=O and hydrogen bond O···H–F stretching vibrations, as well as of librational vibrations of monomers, on the spectral parameters of the strongest ν(H–F) absorption band of trimer was studied.  相似文献   

12.
The infrared spectra and stability of CO and H2O sorption over Ag-exchanged ZSM-5 zeolite were investigated by using density function theory (DFT). The changes of NBO charge show that the electron transfers from CO molecule to the Ag+ cation to form an σ-bond, and it accompanies by the back donation of d-electrons from Ag+ cation to the CO (π*) orbital as one and two CO molecules are adsorbed on Ag-ZSM-5. The free energy changes ΔG, −5.55 kcal/mol and 6.52 kcal/mol for one and two CO molecules, illustrate that the Ag+(CO)2 complex is unstable at the room temperature. The vibration frequency of C-O stretching of one CO molecule bonded to Ag+ ion at 2211 cm−1 is in good agreement with the experimental results. The calculated C-O symmetric and antisymmetric stretching frequencies in the Ag+(CO)2 complex shift to 2231 cm−1 and 2205 cm−1 when the second CO molecule is adsorbed. The calculated C-O stretching frequency in CO-Ag-ZSM-5-H2O complex shifts to 2199 cm−1, the symmetric and antisymmetric O-H stretching frequencies are 3390 cm−1 and 3869 cm−1, respectively. The Gibbs free energy change (ΔGH2O) is −6.58 kcal/mol as a H2O molecule is adsorbed on CO-Ag-ZSM-5 complex at 298 K. The results show that CO-Ag-ZSM-5-H2O complex is more stable at room temperature.  相似文献   

13.
Abstract

The Fourier transform (FT) infrared and Raman spectra of newberyite, MgHPH4 - 3H2O are studied in the region where the stretching vibrations of the water molecules (protiated and deuterated) and the O-H/O-D stretches of the hydrogenphosphate anions are expected to appear. The O-H stretching vibrations give rise to a complex feature known as the A,B,C trio. Since neither of the maxima found below 3000 cm?1 represents a true band arising from a given fundamental, it is pointless to correlate their frequencies with the observed O…O distances. In the water stretching region, the two bands with highest frequencies undoubtedly correspond to the anti symmetric and symmetric stretch of one type of the water molecules. The stretching vibrations of one of the remaining two types of H2O molecules are clearly uncoupled and the O-H oscillator involved in the weaker hydrogen bond is responsible for a band at 3376 cm?1 whereas the rest of the water stretchings are apparently overlapped yielding the complex band below 3320 cm?1. Thus the situation is again complicated and the correlations between the frequencies and the Ow…O distances are inappropriate. The two bands at highest frequencies (3522 and 3483 cm?1 at RT) exhibit a positive temperature coefficient.

  相似文献   

14.
Raman spectroscopy has been used to study the arsenate minerals haidingerite Ca(AsO3OH)·H2O and brassite Mg(AsO3OH)·4H2O. Intense Raman bands in the haidingerite spectrum observed at 745 and 855 cm−1 are assigned to the (AsO3OH)2−ν3 antisymmetric stretching and ν1 symmetric stretching vibrational modes. For brassite, two similarly assigned intense bands are found at 809 and 862 cm−1. The observation of multiple Raman bands in the (AsO3OH)2− stretching and bending regions suggests that the arsenate tetrahedrons in the crystal structures of both minerals studied are strongly distorted. Broad Raman bands observed at 2842 cm−1 for haidingerite and 3035 cm−1 for brassite indicate strong hydrogen bonding of water molecules in the structure of these minerals. OH···O hydrogen‐bond lengths were calculated from the Raman spectra based on empirical relations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The title molecules, N-(1,5-dimethyl-3-oxo-2-phenyl-1H-3-(2H)-pyrazolyl)4-nitrobenzamide (C18H16N4O4·H2O) (I) and 2,2-dimethyl-3-(4-nitrobenzoyl)-5-(phenylamino)-2,3-dihydro-1,3,4-thiyadiazole (C17H16N4O3S) (II), were prepared and characterised by 1H NMR, 13C NMR, infrared spectroscopy (IR) and structural X-ray diffraction (XRD) techniques. The molecular geometries, vibrational frequencies of the title compounds in the ground state have been calculated by using the density functional theory (DFT) method with 6-31G(d) basis set, and compared with the experimental data. The calculated results showed that the optimised geometries from the DFT method agree with the X-ray structures well for both compounds. Theoretical calculations of harmonic vibration frequencies are in good agreement with experimental results. To determine conformational flexibility, the molecular energy profiles of the title compounds were obtained. Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis and thermodynamic properties of the title compounds were investigated by theoretical calculations.  相似文献   

16.
A short range force constant model has been applied for the first time to investigate the phonons in NdMnO3 perovskite in the orthorhombic phase. The calculations with nine stretching and eight bending force constants provide good agreement for the observed Raman frequencies. The infrared frequencies have been assigned for the first time.  相似文献   

17.
Raman spectra of the uranyl titanate mineral brannerite were analysed and related to the mineral structure. A comparison is made with the Raman spectra of uranyl oxyhydroxide hydrates. The observed bands are attributed to the TiO and (UO2)2+ stretching and bending vibrations, U OH bending vibrations, as well as H2O and (OH) stretching, bending and libration modes. U O bond lengths in uranyls and O H···O bond lengths were calculated from the wavenumbers assigned to the stretching vibrations. Raman bands of brannerite are in harmony with those of the uranyl oxyhydroxides. The mineral brannerite is metamict, as is evidenced by the intensity of the UO stretching and bending modes being of lower intensity than expected and with bands that are significantly broader. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
The infrared spectra of eighteen complexes of general formula trans-[Co(NO2) (acac)2 (R-C6H4NH2)] (acac = acetylacetonate anion, R = 3- or 4-aniline substituent) are discussed. 15N-Labelling of the complexes containing aniline and p-toluidine yields assignments of the N-H, C-N and Co-N stretching frequencies and the N-H bending frequencies. These assignments receive support from the observed frequency shifts induced by varying the substituent R which also permits the assignment of the Co-o stretching frequencies.  相似文献   

19.
Although the vibrational spectra and force constants of CH3CN and CD3CN have been thoroughly studied, partially deuterated methyl cyanide has received much less attention. The infrared spectrum of CD2HCN has only recently been reported1 and that of CH2DCN has not yet appeared. Normal coordinate analysis for neither partially deuterated species has appeared. We report here harmonic frequencies and potential energy distributions for both partially deuterated methyl cyanide species, CH2DCN and CD2HCN, based on force fields and structural parameters from CH3CN and CD3CN. The calculated frequencies for CD2HCN are compared with the observed infrared frequencies. The vibrational interaction of the relatively high CN stretching frequency and the CD stretching frequencies is also discussed.  相似文献   

20.
A simple spring model for molecular vibrations, which uses Cartesian co-ordinates for both longitudinal and transverse displacements, is applied to centrosymmetric linear quadratomic molecules, such as cyanogen and acetylene and its halogenated derivatives. Analytical expressions for the three stretching and two bending mode frequencies are obtained in terms of five independent force constants. By substitution of Raman and infrared frequencies, values of these force constants are obtained and briefly discussed. The validity of the model is confirmed by the satisfactory agreement between calculated and observed frequencies of isotopic species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号