首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A low-temperature high-resolution luminescence study of the EuCl3bpy2(H2O) n isomers has been carried out. The Eu3+ luminescence spectra of all geometric isomers were recorded over the spectral range which includes transitions from the 5D0 excited state to the 7F0–4 ground state manifolds and from the 5D1 excited state to the 7F0–2 ground state manifolds. Analysis of the Eu3+ transitions observed in the luminescence spectra shows that the Eu3+ ion occupies a spectroscopic site symmetry that approaches a C2 v symmetry with distortion towards C2 or lower symmetry. The structural features and distortions of the Eu3+ coordination polyhedron in these geometric isomers were described based on the X-ray crystallographic data as well. The splitting patterns and energies found of the 7F0–4 manifolds have been used to calculate the crystal field parameters (CFPs) of the Eu3+ ions in these geometric isomers. In addition the mutual influence of the ligands as well as the relative stability of geometric isomers of the [EuCl3bpy2(H2O)2]+ cation in the gas phase was analyzed within DFT calculations.  相似文献   

2.
The luminescence of Eu3+ ions implanted in ultradisperse diamond powders, activated by impregnating with a solution of Eu(NO3)3·6H2O and heat-treated at various temperatures, is studied. A multiple increase in the efficiency of excitation in the charge-transfer band is observed for the 5D0 state of Eu3+ ions as compared to europium nitrate heat-treated similarly. This effect is explained by an increase in the degree of Eu-O bond covalency and a change in the activator coordination polyhedron due to the formation of chemical bonds Eu-O-C.  相似文献   

3.
Eu(DBM)32H2O and Eu2(DDBM)3H2O were synthesized by reactions between EuCl3 and chelating regents of β-diketone (dibenzoylmethane, HDBM) and bis(β-diketone) (1,3-bis(3-phenyl-3-oxopropanoyl)benzene, H2DDBM), respectively, and their luminescence properties were investigated by the fluorescence spectra and metastable state decay spectra. It was found that the relative intensity ratio of 5D07F2 to 5D07F1transition and the radiative lifetime shows a little change attributing to the different symmetry of europium ions, which Ω2 of Eu complexes with β-diketone and bis(β-diketone) are 13.08 and 12.24, respectively. Moreover, it was also found that the metastable state lifetime of Eu2(DDBM)3H2O is much longer than that of Eu(DBM)32H2O, due to smaller water quenching and lower triplet level of ligands. The Commission Internacionale d’Éclairage (CIE) chromaticity coordinates calculated from emission spectrum are x=0.637 and y=0.343 for Eu2(DDBM)3H2O, which presents high red color purity near 100%.  相似文献   

4.
Phosphate (P2O5+K2O+BaO+Al2O3+Eu2O3) and fluorophosphate (P2O5+K2O+BaO+BaF2+Al2O3+Eu2O3) glasses with different Eu3+ ion concentrations have been prepared and characterized through optical absorption, photoluminescence and decay times. An intense red luminescence is observed from the 5D0 emitting level of Eu3+ ions in these glasses. The relative luminescence intensity ratio of 5D07F25D07F1 transitions has been evaluated to estimate the local site symmetry around the Eu3+ ions. The emission spectra of these glasses show a complete removal of degeneracy for the 5D07F1 and 5D07F2 transitions. Second and fourth rank crystal-field (CF) parameters have been calculated together with the CF strength parameter by assuming the C2v symmetry for the Eu3+ ions in both the phosphate and fluorophosphate glasses. Judd-Ofelt parameters have been evaluated from the luminescence intensity ratios of 5D07FJ (J=2, 4 and 6) to 5D07F1 transitions. These parameters have been used to derive radiative properties such as transition probabilities, branching ratios, radiative lifetimes and peak stimulated emission cross-sections for the 5D07FJ transitions. Decay curves of the 5D0 level of Eu3+ ions in these two Eu3+:glass systems have been measured by monitoring the 5D07F2 transition (611 nm) at room temperature. The experimental lifetime of the 5D0 level in the title glasses is found to be higher than Eu3+-doped niobium phosphate glasses. The analysis indicates that the lifetime of the 5D0 level is found to be less sensitive to the Eu3+ ion concentration and addition of BaF2 has no significant effect on the optical properties of Eu3+-doped phosphate glasses.  相似文献   

5.
The spectral distributions of the visible absorption and fluorescence emission under electron beam excitation of Eu3+-doped (Y2O3) and (YVO4) powders have been detected and analyzed. (Y2O3: Eu3+) has a cubicC crystal structure with a unit cell dimension a=10·61 Å. Its observed transitions from7 F 0 to many upper states have been recognized; the observed number of Stark components is in agreement with that based on theC 2 site symmetry of the Eu3+ ion in Y2O3. Eu3+-doped yttrium vanadate has a typical zircon tetragonal crystal structure with unit cell dimensions ofc=6·29 Å anda=7·11 Å. The observed transitions in (Eu3+: YVO4) have been identified and assigned in accordance with theD 2d site symmetry of the Eu3+ ion in this lattice.The authors would like to express their deep gratitude to Professor G. F. J.Garlick, University of Hull, England, for offering experimental facilities in his Physics Department.  相似文献   

6.
In this paper, Eu3+ β-diketone Complexes with the two ligands 1-(2-naphthoyl)-3, 3, 3-trifluoroacetonate (TFNB) and 2’2-bipyridine (bpy) have been synthesized. Furthermore, we reported a systematical study of the co-fluorescence effect of Eu(TFNB)3bpy doped with inert rare earth ions (La3+, Gd3+ and Y3+) and luminescence ion Tb3+. The co-luminescence effect can be found by studying the luminescence spectra of the doped complexes, which means that the existence of the other rare earth ions (La3+, Y3+, Gd3+ and Tb3+) can enhance the luminescence intensity of the central Eu3+, which may be due to the intramolecular energy transfer between rare earth ions and Eu3+. The efficient intramolecular energy transfer in all the complexes mainly occurs between the ligand TFNB and the central Eu3+. Full characterization and detail studies of luminescence properties of all these synthesized materials were investigated in relation to co-fluorescence effect between the central Eu3+ and other inert ions. Further investigation into the luminescence properties of all the complexes show that the characteristic luminescence of the corresponding Eu3+ through the intramolecular energy transfers from the ligand to the central Eu3+. Meantime, the differences in luminescence intensity of the 5D07F2 transition, in the 5D0 lifetimes and in the 5D0 luminescence quantum efficiency among all the synthesized materials confirm that the doped complex Eu0.5Tb0.5(TFNB)3bpy exhibits higher 5D0 luminescence quantum efficiency and longer lifetime than the pure Eu(TFNB)3bpy complex and other materials.  相似文献   

7.
Three kinds of europium complexes; Eu(phen)2Cl3(H2O)2, Eu(DN-bpy)phenCl3(H2O)2 and Eu(DB-bpy)phenCl3(H2O)2 (phen: 1,10-phenanthroline, DN-bpy: 4,4′-Dinonyl-2,2′-dipyridyl, DB-bpy: 4,4′-Di-tert-butyl-2,2′-dipyridyl) were prepared and then incorporated into polymethyl methacrylate (PMMA) matrix with different molar ratios of CO groups/Eu3+ ions. The final solid composites were formed by a self-assembly process among Eu3+ ion, the ligands and PMMA during the solvent evaporation process, and then the ligands re-coordinate to Eu(III). It was found that the ligands affect not only the emission properties of the pure complexes, but also the miscibility of the complexes and PMMA. More than one kind of symmetric sites of Eu3+ ions were formed in the composites due to the coordination of CO in PMMA to Eu3+ ions. The micro-environments of Eu(III) in the composites were changed with the compositions and the ligands, leading to the change in the crystalline structure, and consequently, the emission characteristics.  相似文献   

8.
This work reports the synthesis and luminescent properties of complexes of europium(III) with 2-thienyltrifluoroacetonate (HTTA), terephthalic acid (TPA) and phenanthroline (Phen), in the solid state. The new complexes were characterized by elemental analysis, infrared (IR) spectroscopy, scanning electronic microscopy (SEM) and thermal stability analysis. Both binuclear complex Eu2(TPA)(TTA)4Phen2 and polynuclear complex Eu(TPA)(TTA)Phen present better thermal stability than the mononuclear complex Eu(TTA)3Phen does. The formation of the binuclear/polynuclear structure of the complexes appears to be responsible for the enhancement of the thermal stability. The emission spectra show narrow emission bands that arise from the 5D07FJ (J=0-4) transition of the Eu3+ ion. The spectral data of the complexes Eu(TPA)(TTA)Phen and Eu2(TPA)(TTA)4Phen2 present only one sharp peak in the region of the 5D07F0 transition indicating that only one Eu3+ ion species is present in each sample. In addition, the luminescence decay curves of the complexes Eu(TPA)(TTA)Phen and Eu2(TPA)(TTA)4Phen2 fit a single-exponential decay law. The values of quantum efficiencies of the emitting 5D0 level for the complexes Eu(TPA)(TTA)Phen and Eu2(TPA)(TTA)4Phen2 are 29% and 28%, respectively.  相似文献   

9.
The lineshift and the linewidth of the transition5 D 07 F 0 has been measured in EuCl3 · 6H2O, Eu(NO3) · 6H2O and Eu2O3 as a function of temperature between 4.2 and 300 °K. In all cases the lines are shifted to the blue (shorter wavelength) with increasing temperature. A linear relationship is found between the lineshifts and the internal energies of the compounds.—In Eu(C2H5SO4)3 · 9H2O the linewidth of several transitions from the5 D 0 state to the crystal field states of the7 F i levels have been measured at 4.2 °K. The linewidths are compared with those expected for a depopulation of the7 F i states by phonons.  相似文献   

10.
Lithium titanate ceramics doped with Eu were synthesized and their photoluminescence (PL) and emission spectral characteristics were investigated. PL spectra of the sample showed peaks corresponding to the 5D07FJ (J=0, 1, 2, 3 and 4) transitions under 230 nm excitation. The fluorescence lifetimes of Eu3+ ions were found out to be 645 μs. Strong red emission coming from the hypersensitive 5D07F2 transition of Eu3+ ion suggested the presence of the dopant ion in highly asymmetric environment. Further analysis of the emission spectrum revealed that the symmetry of the metal ion is very low i.e. C2. The emission intensity of the sample was compared with a commercial phosphor to get an idea about the commercial utility of the phosphor. Various emission properties for the system namely Judd-Ofelt intensity parameters, spontaneous emission probabilities, branching ratios, radiative lifetimes and quantum efficiency were evaluated for the dopant ion by adopting standard procedure.  相似文献   

11.
In this paper, ligand effect of several bi-dental oxygen (O) and nitrogen (N) ligands on the red luminescence properties of europium ion (Eu3+) was studied comprehensively. Absorption, emission, and excitation spectral properties of ternary europium complexes with different combinations of ligands including thenoyl trifluoroacetone (TTA), naphthyl trifluoroacetone (NTA), 2,2′-bipyridyl (bpy) and phenanthroline (Phen) were investigated. Efficient Eu3+ red emission was observed with all the combinations of the above mentioned ligands. The most intense emission was found with the all nitrogen coordinated complex Eu(bpy)2(Phen)2 while the longest wavelength excitation band was recorded with oxygen-nitrogen mixed NTA-bpy complex Eu(NTA)1(bpy)3. With change of the ligands combination and ratio, the Eu3+ emission peak changes slightly from 612 to 618 nm. The absorption and excitation spectra of the europium complexes were compared and analyzed referring to the individual absorption spectral properties of the ligands. The relation between ligand-to-metal charge transfer states and luminescence intensities for different complexes was studied.  相似文献   

12.
ABSTRACT

According to the spectra of stationary X-ray excited luminescence (XEL) of BaF2: Eu nanophosphors at 80 and 294 K, it was revealed that the thermal annealing of fine-grained nanoparticles (d?=?35?nm) in the range of 400–1000°C, which is accompanied by an increase of their sizes in the range of 58–120?nm, does not result in effective changes of the charge state of Eu3 + → Eu2 + activator, in contrast to CaF2: Eu nanoparticles. The maximum light output of X-ray excited luminescence of BaF2: Eu nanophosphors in the 590?nm emission band of Eu3+ ion was observed at an annealing temperature of 600°C with the average size of nanoparticles 67?nm. The subsequent growth of annealing temperatures, especially in the range of 800–1000°C, causes decrease in the light output of X-ray excited luminescence due to the increase of defect concentration in the lattice as a result of sharp increase of nanoparticle sizes and their agglomeration. In BaF2: Eu nanoparticles of 58?nm size, according to the thermostimulated luminescence (TSL) spectrum, transformation of Eu3+ → Eu2+ under the influence of long-time X-ray irradiation was revealed for the peak of 151?K. Thus, X-ray excited luminescence spectra of BaF2: Eu nanophosphors are formed predominantly due to the emission of Eu3+ ions, while emission of Eu2+ ions is observed in the TSL spectra.  相似文献   

13.
A ligand with double sulfinyl groups, naphthyl-naphthalinesulphonylpropyl sulfoxide(dinaphthyl disulfoxide, L), was synthesized by a new method and its several lanthanide (III) complexes were synthesized and characterized by element analysis, molar conductivity, coordination titration analysis, IR, TG-DTA, 1HNMR and UV spectra. The composition of these complexes, were RE2(ClO4)6·(L)5·nH2O (RE = La, Nd, Eu, Tb, Yb, n = 2 ∼ 6, L = C10H7SOC3H6SOC10H7). The fluorescent spectra illustrated that the Eu (III) complex had an excellent luminescence. It was supposed that the ligand was benefited for transferring the energy from ligand to the excitation state energy level (5D0) of Eu (III). The Tb (III) complex displayed weak luminescence, which attributed to low energy transferring efficiency between the average triplet state energy level of ligand and the excited state (5D4) of Tb (III). So the Eu (III) complex displayed a good antenna effect for luminescence. The phosphorescence spectra and the relationship between fluorescence lifetime and fluorescence intensity were also discussed.  相似文献   

14.
Red, blue and green emitting rare earth compounds (RE3+=Eu3+, Gd3+ and Tb3+) containing the benzenetricarboxylate ligands (BTC) [hemimellitic (EMA), trimellitic (TLA) and trimesic (TMA)] were synthesized and characterized by elemental analysis, complexometric titration, X-ray diffraction patterns, thermogravimetric analysis and infrared spectroscopy. The complexes presented the following formula: [RE(EMA)(H2O)2], [RE(TLA)(H2O)4] and [RE(TMA)(H2O)6], except for Tb-TMA compound, which was obtained only as anhydrous. Phosphorescence data of Gd3+-(BTC) complexes showed that the triplet states (T) of the BTC3− anions have energy higher than the main emitting states of the Eu3+ (5D0) and Tb3+ (5D4), indicating that BTC ligands can act as intramolecular energy donors for these metal ions. The high values of experimental intensity parameters (Ω2) of Eu3+-(BTC) complexes indicate that the europium ion is in a highly polarizable chemical environment. Based on the luminescence spectra, the energy transfer from the T state of BTC ligands to the excited 5D0 and 5D4 levels of the Eu3+ and Tb3+ ions is discussed. The emission quantum efficiencies (η) of the 5D0 emitting level of the Eu3+ ion have been also determined. In the case of the Tb3+ ion, the photoluminescence data show the high emission intensity of the characteristic transitions 5D47FJ (J=0-6), indicating that the BTC ligands are good sensitizers. The RE3+-(BTC) complexes act as efficient light conversion molecular devices (LCMDs) and can be used as tricolor luminescent materials.  相似文献   

15.
Li WX  Guo L  Chen LJ  Shi XY 《Journal of fluorescence》2008,18(6):1043-1049
A ligand with two carbonyl groups and one sulfinyl group has been synthesized by a new method and its several lanthanide (III) complexes were synthesized and characterized by element analysis, molar conductivity, coordination titration analysis, IR, TG-DSC, 1H NMR and UV spectra. The results indicated that the composition of these complexes is REL5(ClO4)3·3H2O (RE = La(III), Pr(III), Eu(III), Tb(III), Yb(III), L = C6H5COCH2SOCH2COC6H5). The fluorescent spectra illustrate that both the Tb (III) and Eu (III) complexes display characteristic metal-centered fluorescence in solid state, indicating the ligand favors energy transfer to the excitation state energy level of them. However, the Tb (III) complex displays more effective luminescence than the Eu (III) complex, which is attributed to especial effectively in transferring energy from the average triplet energy level of the ligands (T) onto the excited state (5D4) of Tb (III) than that (5D0) of Eu (III), showing a good antenna effect for Tb(III) luminescence. The phosphorescence spectra and the relationship between fluorescence lifetimes and fluorescence intensities were also discussed.  相似文献   

16.
A dinuclear Eu (III) complex Eu2(dbt)3·4H2O was synthesized, where H2dbt was 2,8-bis(4′,4′,4′,-trifluoro-1′,3′-dioxobutyl)-dibenzothiophene. The complex emits the characteristic red luminescence of Eu3+ ion due to the 5D07FJ(J=0-4) transitions under 395 nm-light excitation with a luminescent quantum efficiency of 17%. The complex is thermally stable up to 280 °C. It was found that the complex can be effectively excited by a 395 nm-emitting InGaN chip. Bright red light was obtained using the complex as light color-conversion material.  相似文献   

17.
Photoluminescence and lifetime decay properties of varied valence Eu were employed to investigate the luminescence mechanism of green-light emission positioned at ∼515 nm for full color emission LaAlO3 phosphor co-doped with Eu2+ and Eu3+. The enhanced 5D27F3 transition emission of Eu3+ was assigned for this green emission. Energy transfer between Eu2+ and 5D2 level of Eu3+ was proposed, which results in the enhancement of 5D27F3 transition emission. In addition, energy transfer relations between host-Eu and charge transfer state (CTS)-Eu were also discussed associated with the PLE spectra and band schemes.  相似文献   

18.
Binary (ZnO)0.5(P2O5)0.5 glasses doped with Eu2O3 and nanoparticles of Gd2O3:Eu were prepared by conventional melt-quench method and their luminescence properties were compared. Undoped (ZnO)0.5(P2O5)0.5 glass is characterized by a luminescent defect centre (similar to L-centre present in Na2O-SiO2 glasses) with emission around 324 nm and having an excited state lifetime of 18 ns. Such defect centres can transfer the energy to Eu3+ ions leading to improved Eu3+ luminescence from such glasses. Based on the decay curves corresponding to the 5D0 level of Eu3+ ions in both Gd2O3:Eu nanoparticles incorporated as well as Eu2O3 incorporated glasses, a significant clustering of Eu3+ ions taking place with the latter sample is confirmed. From the lifetime studies of the excited state of L-centre emission from (ZnO)0.5(P2O5)0.5 glass doped with Gd2O3:Eu nanoparticles, it is established that there exists weak energy transfer from L-centres to Eu3+ ions. Poor energy transfer from the defect centres to Eu3+ ions in Gd2O3:Eu nanoparticles doped (ZnO)0.5(P2O5)0.5 glass has been attributed to effective shielding of Eu3+ ions from the luminescence centre by Gd-O-P type of linkages, leading to an increased distance between luminescent centre and Eu3+ ions.  相似文献   

19.
Borate Ba3InB9O18 (BIBO) has been adopted as a host material for phosphors for the first time. Lanthanide ions (Eu3+/Tb3+)-doped BIBO phosphors have been synthesized by solid-state reaction and luminescent properties investigated under ultravoilet (UV) excitation. For red phosphor BIBO:Eu, dominant emission peaking at 590 nm was attributed to 5D07F1 transition of Eu3+, which confirmed that the local site of Eu3+ occupied by In3+ ion in BIBO crystal lattice is at inversion symmetry center. Optimum Eu3+ concentration of BIBO:Eu under UV excitation with 227 nm wavelength is around 40%. The green phosphor BIBO:Tb showed bright green emission at 550 with 232 nm light excited and optimal of Tb3+ concentration measured in BIBO is about 8%. The corresponding luminescence mechanisms of Ln-doped BIBO (Ln=Eu3+/Tb3+) were analyzed. The luminescent intensity of Tb3+ can be significantly improved by co-doping of Bi3+ in the BIBO:Tb lattice. The likely reason was proposed in terms of the different interactions of the host lattice with these ions, and of these ions with each other.  相似文献   

20.
Eu3+ doped ZnO nanoparticles are known to have significance extent of surface Eu3+ ions due to a large difference in ionic radii. Effect of such Eu3+ ions on the luminescence properties of ZnO:Eu nanoparticles has been understood from the luminescence studies of ZnO:Eu nanoparticles covered with Y2O3 shell. Based on the asymmetric ratio of luminescence and extent of energy transfer, it is established that when ZnO:Eu nanoparticles are covered with Y2O3 shell, a part of Eu3+ ions present with ZnO:Eu core migrate to Y2O3 shell and occupy Y3+ lattice positions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号