首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe the physics of the SERS based on the optical near-field intensity enhancement on the metallic (plasmonic) and the nonmetallic (Mie scattering) nanostructured substrates with two-dimensional (2D) periodic nanohole arrays. The calculation by the Finite-Difference Time-Domain (FDTD) method revealed that the optical intensity enhancement increases with the increase of the thickness of a gold film coating on the nonmetallic (dielectric) nanostructured Si, GaAs, and SiC substrates. The resonance spectrum shifts with the changes in the geometrical structure of the void diameter and inter-void distance. It was clarified that the optical intensity enhancement obtained with the gold-coated substrate is equivalent to that with a gold substrate at 70-nm thick gold coating on the dielectric substrates in this structure. The resonance spectral bandwidth for Mie scattering and plasmonic near-fields is different. Therefore, if the Stokes line of the Raman scattering is located within the resonance bandwidth, the SERS signal is enhanced proportionally to the fourth power of the electric near-field. However, if the Stokes shift is located out of the resonance bandwidth, the SERS signal enhancement is only proportional to the square of the scattered near-field.  相似文献   

2.
Using the finite-difference time-domain (FDTD) method, we simulate the coupling between a gold nanorod and gold nanoparticles with different plasmonic resonant frequencies/volumes as well as that between the nanorod and a dielectric nanosphere. The influences of coupling with different nanoparticles on the excitation of a forbidden longitudinal surface plasmon mode of the nanorod under normal incidence are investigated. It is found that the cause of this excitation is the broken symmetry of the local electric field experienced by the nanorod resulting from the charge pileup on the other nanoparticle. This result is valuable for understanding the near-field optical characterization of plasmonic metal nanoparticles. Supported by the National Natural Science Foundation of China (Grant Nos. 10821062 and 10804004), the National Basic Research Program of China (Grant No. 2007CB307001), and the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 200800011023) Contributed by GONG QiHuang  相似文献   

3.
We investigated the plasmonic resonance enhanced two-photon photopolymerization (PETPP) using the isolated chemical synthesized gold nanorods for fabrication of polymer/metal nanocomposites. The isolated gold nanorods with the plasmonic resonance band around 750 nm covered by photoresist were irradiated by a femtosecond laser with the wavelength of 780 nm. The PETPP trigged by the plasmonic resonance enhancement of gold nanorods was localized only in the distance smaller than 30 nm from the surface of gold nanorods, which matched the distance of plasmonic resonant enhanced field of the gold nanorod. The shapes of obtained polymer/gold nanocomposites were changed from the “dumbbell” to the “ellipsoid” with the increase of laser irradiating intensity used for PETPP. This study would provide a potential method for fabricating the plasmonic nanomaterials and nanostructures of polymer/metal nanocomposites, which could be expected to be applied in the emerging fields such as nanophotonics, nanobiosensor, nanolithography.  相似文献   

4.
Zhou N  Kinzel EC  Xu X 《Optics letters》2011,36(15):2764-2766
Nanoscale bowtie antenna and bowtie aperture antenna have been shown to generate strongly enhanced and localized electric fields below the diffraction limit in the optical frequency range. According to Babinet's principle, their complements will be efficient for concentrating and enhancing magnetic fields. In this Letter, we discuss the enhancement of magnetic field intensity of nanoscale complementary bowtie aperture as well as complementary bowtie aperture antenna, or diabolo nanoantenna. We show that the complementary bowtie antenna resonates at a smaller wavelength and thus is more suitable for applications near visible wavelengths. The near-field magnetic intensity can be further enhanced by the addition of groove structures that scatter surface plasmon.  相似文献   

5.
We present the fabrication of nanostructures ablated on silicon(100) by the plasmonic scattering of 780 nm, 220 fs laser pulses in the near-field of gold nanospheres. We take advantage of the enhanced plasmonic scattering of ultrashort laser light in the particle near-field to ablate well-defined nanocraters. Gold nanospheres of 150 nm diameter are deposited onto a silicon surface and irradiated with a single laser pulse. We studied the effect of laser polarization on the morphology of ablated nanostructures and estimated the minimum fluence for plasmonic nanoablation. When the polarization of the incident radiation is directed at a 45° angle into the substrate surface, a near-field enhancement of 23.1±7.6 is measured, reducing the required silicon ablation fluence from 191±14 mJ/cm2 to 8.2±2.9 mJ/cm2. Enhancements are also measured for laser polarizations parallel to the substrate surface when the substrate is angled 0° and 45° to the incident irradiation, giving enhancements of 6.9±0.6 and 4.1±1.3, respectively. Generated nanocrater morphologies show a direct imprint of the particle dipolar scattering region, as predicted in our theoretical calculations. The measured near-field enhancement values agree well with the maximum field enhancements obtained in our calculations. The agreement between theory and measurements supports that the nanocraters are indeed formed by the enhanced plasmonic scattering in the near-field of the nanoparticles. PACS 42.62.-b; 52.38.Mf; 81.65.Cf; 81.16.-c; 78.67.Bf  相似文献   

6.
We consider methods to define the performance metrics for different plasmonic materials to be used in localized surface plasmon applications. Optical efficiencies are shown to be better indicators of performance as compared to approximations in the quasistatic regime. The near-field intensity efficiency, which is a generalized form of the well-known scattering efficiency, is a more flexible and useful metric for local-field enhancement applications. We also examine the evolution of the field enhancement from a particle surface to the far-field regime for spherical nanoparticles with varying radii. Titanium nitride and zirconium nitride, which were recently suggested as alternative plasmonic materials in the visible and near-infrared ranges, are compared to the performance of gold. In contrast to the results from quasistatic methods, both nitride materials are very good alternatives to the usual plasmonic materials.  相似文献   

7.
Plasmonic bowtie nanoantennas (BNAs) can exhibit a strong enhancement of optical field, leading to large nonlinear effects. We investigated the nonlinear optical absorption of an array of BNA by femtosecond pulses, using the open-aperture Z-scan technique. The BNA array composed of paired gold nanotriangles was fabricated by nanosphere lithography. We experimentally demonstrated that upon decreasing the gap width, nonlinear absorption is enhanced due to both the enhancement of near-field coupling of nanoantennas and the minimum of the spectral detuning between the center wavelength of the laser for excitation and the localized surface plasmon resonances. The role of near-field resonant plasmonic coupling in BNA is analyzed theoretically and confirmed by our simulations.  相似文献   

8.
Near-field optical trapping can be realized with focused evanescent waves that are excited at the water–glass interface due to the total internal reflection, or with focused plasmonic waves excited on the water–gold interface. Herein, the performance of these two kinds of near-field optical trapping techniques is compared using the same optical microscope configuration. Experimental results show that only a single-micron polystyrene bead can be trapped by the focused evanescent waves, whereas many beads are simultaneously attracted to the center of the excited region by focused plasmonic waves. This difference in trapping behavior is analyzed from the electric field intensity distributions of these two kinds of focused surface waves and the difference in trapping behavior is attributed to photothermal effects due to the light absorption by the gold film.  相似文献   

9.
黄运欢  李璞 《物理学报》2015,64(20):207301-207301
金属纳米颗粒局域表面等离激元共振时能够产生消光和近场增强效应已经成为国内外研究的热点. 应用时域有限差分法对L形纳米棒与普通纳米棒构成的金纳米棒复合体的消光光谱及其近场增强和电流矢量密度分布进行了研究. 计算结果表明, 普通纳米棒和L形纳米棒二聚体的光谱响应与纳米棒间的间距有关, 而金纳米棒复合体的消光光谱可通过调整L形纳米棒与普通纳米棒间的间距、L形纳米棒的臂长度以及普通纳米棒的长度进行调谐. 此外金纳米棒复合体可以分解成L形纳米棒二聚体和普通纳米棒二聚体两个部分, 通过分别改变L形纳米棒的臂长和普通纳米棒的长度, 对比L形纳米棒二聚体和普通纳米棒二聚体间的共振峰位置变化, 可以更直观地了解金纳米棒复合体消光光谱线型的变化. 这些结果可用于指导金纳米棒复合体纳米光子器件的设计, 以满足其在表面增强拉曼散射和生物传感等方面应用.  相似文献   

10.
Periodic arrays of paired and single gold nanorods were imaged in the near field using reflection and transmission modes of a near-field scanning optical microscope at various wavelengths and polarizations of light in the visible range. The paired nanorods act like nanoantenna, and an array of them was initially designed as a negative-index material for the near infrared. Reverse contrast in reflection and transmission images is observed under illumination from the small aperture of a metal-coated fiber probe. By changing the relative orientation of the rods to the polarization, the reverse contrast switches to the normal contrast of near-field imaging. Coupling between the aperture and the nanorod array makes the contrast higher. Transmission through the aperture is enhanced if the aperture probe is positioned between the nanorods. The average near-field transmission exhibits an opposite sign of anisotropy relative to the far-field case. Aperture probes with larger diameters always show normal imaging contrast. The results demonstrate that the broad angular spectra of small-aperture sources play a crucial role in near-field interactions with nanorod arrays. The results also show that angular redistributions of these spectra after transmission or reflection from the nanorod array are likely due to excitation of localized and propagating plasmons.  相似文献   

11.
赵朋程  郭立新 《中国物理 B》2017,26(11):115101-115101
The air breakdown in the high-power antenna near-field region limits the enhancement of the radiated power. A model coupling the field equivalent principle and the electron number density equation is presented to study the breakdown process in the near-field region of the circular aperture antenna at atmospheric pressure. Simulation results show that, although the electric field in the near-field region is nonuniform, the electron diffusion has small influence on the breakdown process when the initial electron number density is uniform in space. The field magnitude distribution on the aperture plays an important role in the maximum radiated power above which the air breakdown occurs. The maximum radiated power also depends on the phase difference of the fields at the center and edge of the aperture, especially for the uniform field magnitude distribution.  相似文献   

12.
We present localized optical field distribution properties in the vicinity of gold particles on a silicon substrate by backward and forward irradiation. It is technically difficult to fabricate nanostructures on the surface by a conventional forward laser incident to the substrate because gold nanoparticles easily aggregate to form double-layered particle arrays. We calculated enhanced optical field properties in order to pattern the substrate surface only with a template of the bottom-layered particle arrays in the case that the backward irradiation of a femtosecond laser is used in the system of aggregated double-layered gold nanoparticle arrays. With the backward irradiation, the optical field intensity in the substrate for the double-layered hexagonal arrays is found to be only 30% lower than the mono-layered system. Moreover, a near field cannot be generated with the forward irradiation. As a result, only the backward irradiation scheme is found to be effective for uniform surface nanopatterning at enhanced plasmonic near-field zones.  相似文献   

13.
钟汉华  周见红  顾辰杰  王勉  方云团  许田  周骏 《中国物理 B》2017,26(12):127301-127301
Fano interference of metallic nanostructure is an effective way to reduce the irradiation loss and improve the spectral resolution. A Π-shaped gold nano-trimer, which is composed of a gold nanorod and two gold nanorices, is presented to investigate the properties of Fano resonances in the visible spectrum by using the finite element method(FEM). The theoretical analysis demonstrates that the Fano resonance of the Π-shaped gold nano-trimer is attributed to the near-field interaction between the bright mode of the nanorice pair and the dark quadrupole mode of the nanorod. Furthermore, by breaking the geometric symmetry of the nanostructure the line-shape spectrum with double Fano resonances of Π-shaped gold nano-trimer is obtained and exhibits structure-dependent and medium-dependent characteristics. It is a helpful strategy to design a plasmonic nanostructure for implementing multiple Fano resonances in practical applications.  相似文献   

14.
A 4-pointed gold nanostar is proposed to form the array on a fiber facet to achieve a greatly enhanced near field intensity for Surface-Enhanced Raman Scattering (SERS) detection. The proposed gold nanostar array has a Surface Plasmon Resonance (SPR) peaked at a wavelength of ~650 nm with up to 45 times electric field intensity enhancement compared with the state-of-the-art nanorod design. It has a wideband SPR field enhancement spanned from 600 to 720 nm, which covers the wavelengths for both the excitation light (632.8 nm) and the Raman signal of the analytes (675–706 nm); With symmetrical structure it forms four hot spots in every unit cell and can detect best for light polarized horizontal or perpendicular to the waist of the nanostars. It also could be altered to tune the SPR and allows the fiber sensor to resonate at different wavelengths, as demonstrated by an example at 533 nm. All the above features make the gold nanostar-based compact and portable fiber sensor an attractive solution for SERS detection.  相似文献   

15.
The excitation of plasmonic Fano resonances leads to a dual advantage in nano-photonics, in terms of local field enhancement and far-field spectral selectivity. Nevertheless, a remarkable challenge related to the hybridization between bright and dark plasmonic modes, i.e. between the two elements cooperating to the Fano resonance generation, consists in the sub-wavelength activation of dark modes via near-field channel. In this regard, strongly coupled plasmonic nano-assemblies are ideal systems providing a highly efficient way towards their excitation. Here, we analyze two trimer nano-architectures supporting respectively electric and magnetic Fano resonances. The different approaches employed for describing the two systems highlighted the role that the near-field coupling and the LSPs de-phasing separately play in the Fano hybridization phenomena.  相似文献   

16.
钟明亮  李山  熊祖洪  张中月 《物理学报》2012,61(2):27803-027803
本文应用离散偶极子近似方法计算了十字形银纳米结构的消光光谱及其近场电场强度分布. 研究表明相比于单根纳米棒, 十字形纳米结构能够提供更强的表面电场; 由于相邻凸起间的电场耦合作用, 当入射光的偏振方向改变时, 在十字形纳米结构的侧表面总能激发出较强的电场.另外, 本文还系统地研究了十字形纳米结构的形貌参数对其表面等离子体共振峰的影响. 这些结果将会指导十字形纳米结构的制备, 以满足其在表面增强拉曼散射中的应用.  相似文献   

17.
We present near-field distributions around an isolated 800-nm silica or silicon nanoparticle, and nanoparticle arrays of 800-nm silica or silicon nanoparticles, on a silicon substrate by the finite-difference time-domain method when 800-nm light is irradiated obliquely to the substrate. Nanopatterning mediated with the nanoparticle system is promising for large-area, high-throughput patterning by using an enhanced localized near-field ablation by the nanoscattered light lens effect. The irradiation area cannot be extended for silica nanoparticles, because the optical field enhancement factor is low. Gold nanoparticles can generate highly enhanced near fields, although at present there are no useful ways to arrange the gold nanoparticles on the substrate at a high throughput. Silicon nanoparticles with high dielectric permittivity have optical characteristics of both silica and gold nanoparticles. The particle arrangement on the Si substrate is technically easy using a wet pulling process. From the calculation, high optical field intensity is acquired with oblique s-polarized irradiation to the substrate under silicon nanoparticle arrays, and the intensity is almost the same as that under gold nanoparticle arrays under the same condition. With this method, high-throughput nanopatterning for a large area would be achievable.  相似文献   

18.
Diffraction-limited circularly polarized electromagnetic radiation has been widely used in the literature for various applications at both optical and microwave frequencies. With advances in nanotechnology, emerging plasmonic nano-optical applications, such as all-optical magnetic recording, require circularly polarized electromagnetic radiation beyond the diffraction limit. In this study, a plasmonic cross-dipole nano-antenna is investigated to obtain a circularly polarized near-field optical spot with a size smaller than the diffraction limit of light. A cross-dipole nano-antenna is composed of four metallic nano-rods placed at a perpendicular orientation with respect to each other. The performance of the nano-antenna is investigated through numerical simulations. In the first part of this study, the nano-antenna is illuminated with a diffraction-limited circularly polarized radiation. An optimal antenna geometry is specified to obtain an intense optical spot that satisfies two necessary conditions for circular polarization: a phase difference of 90° and a unit amplitude ratio between the electric field components in the vicinity of the antenna gap. In the second part of this study, the nano-antenna is illuminated with diffraction-limited linearly polarized radiation. It is shown that the phase difference between the electric field components can be adjusted by selecting either different antenna lengths or different gap distances in the vertical and horizontal directions. Due to the relatively short wavelength of surface plasma waves on the antenna, it is demonstrated that the phase difference can be sufficient to obtain circularly polarized light. An optimal physical configuration for the nano-antenna and the polarization angle of the incident light is identified to obtain a circularly polarized optical spot beyond the diffraction limit from diffraction-limited linearly polarized radiation.  相似文献   

19.
An approximate resonance wavelength equation that varies with metal antenna structure size is developed to design a bowtie gold metal antenna working at near-infrared (IR) wavelength. Bowtie antenna structures with resonance wavelength of 1.06 μm, 1.55 μm and 10.6 μm are designed based on this equation. A finite-difference time domain (FDTD) algorithm with total field scattered field (TFSF) source simulation shows the resonance wavelength of the designed structures being precisely in agreement with the expected wavelengths from the equation. Planar integration of the metal bowtie antennas is discussed as well. Gold nanohole bowtie antenna arrays are fabricated and the near-field optical transmission properties of the nanohole array are investigated with a near-field scanning optical microscope (NSOM). Our experimental results verify the near-field optical transmission performance and further demonstrate that they are in agreement with the theoretical calculation results. The high enhancement efficiency and integration of the metal bowtie antennas open the possibility of a wide application in IR optoelectronics detection and imaging.  相似文献   

20.
Jingyi Zhao 《中国物理 B》2021,30(11):114215-114215
A surrounding electromagnetic environment can engineer spontaneous emissions from quantum emitters through the Purcell effect. For instance, a plasmonic antenna can efficiently confine an electromagnetic field and enhance the fluorescent process. In this study, we demonstrate that a photonic microcavity can modulate plasmon-enhanced fluorescence by engineering the local electromagnetic environment. Consequently, we constructed a plasmon-enhanced emitter (PE-emitter), which comprised a nanorod and a nanodiamond, using the nanomanipulation technique. Furthermore, we controlled a polystyrene sphere approaching the PE-emitter and investigated in situ the associated fluorescent spectrum and lifetime. The emission of PE-emitter can be enhanced resonantly at the photonic modes as compared to that within the free spectral range. The spectral shape modulated by photonic modes is independent of the separation between the PS sphere and PE-emitter. The band integral of the fluorescence decay rate can be enhanced or suppressed after the PS sphere couples to the PE-emitters, depending on the coupling strength between the plasmonic antenna and the photonic cavity. These findings can be utilized in sensing and imaging applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号