首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 304 毫秒
1.
秦立国  王中阳  马鸿洋  王淑梅  龚尚庆 《中国物理 B》2017,26(12):128502-128502
To promote the future quantum information technologies, we demonstrate an electrically driven optical switch based on quantum interference in a hybrid opto-electromechanical system, which consists of an opto-mechanical cavity and an external electric circuit. The key element of our scheme is a moveable mirror of cavity as a charged mechanical oscillator capacitively coupled to a fixed charged plate in a variable capacitor. By adjusting the voltage of the capacitor, the displacement of the moveable mirror is modulated, then the cavity field can be electrically turned on or off due to the detuning of the cavity. Based on the cavity induced transparency, the transparency window can be electrically switched on or off by turning on or off the cavity field. Therefore, the susceptibility of the medium in the cavity can be electrically controlled, i.e., the scheme of the electrically controlled absorption switching can be demonstrated. This electrically driven optical switch will excite a development trend and implementation prospect towards the integration and miniaturization of quantum module device in a chip.  相似文献   

2.
《中国物理 B》2021,30(10):104211-104211
The ideal optomechanically induced transparency effects of an output probe field are investigated in a cavity optoelectromechanical system, which is composed of an optical cavity, a charged mechanical resonator, and a charged object.Although the charged mechanical resonator damping rate is nonzero, the ideal optomechanically induced transparency can still appear due to the non-rotating wave approximation effect in the system. The location of optomechanically induced transparency dip can be controlled via the Coulomb coupling strength. In addition, we find that both the transparency window width and the maximum dispersion curve slope are closely related to the optical cavity decay rate.  相似文献   

3.
We theoretically investigate the analog of electromagnetically induced absorption and parametric amplification in a hybrid opto-electromechanical system consisting of an optical cavity and a microwave cavity coupled to a common mechanical resonator. When the two cavity modes are driven by two pump fields, a weak probe beam is applied to the optical cavity to monitor the optical response of the hybrid system, which can be effectively controlled by adjusting the frequency and power of the two pump fields. We find that the analog of electromagnetically induced absorption and parametric amplification can appear in the probe transmission spectrum when one cavity is pumped on its red sideband and another is pumped on its blue sideband. These phenomena can find potential applications in optical switching and signal amplification in the quantum information process.  相似文献   

4.
We consider an opto-mechanical cavity system consisting of Bose-Einstein condensate (BEC), trapped inside the optical cavity and driven by single mode laser field. The intracavity field acts as nonlinear spring which couples the condensate mode with moving end mirror of the cavity. We study the occurrence of normal mode splitting in the position spectra of the mechanical oscillator and condensate mode as a consequence of hybridization of the fluctuations of intracavity field, mechanical mode and condensate mode. We also discuss the modification in the dynamics of the mechanical oscillator due to frequency of the collective oscillations of cold atoms and the back action of the atoms on the mechanical mirror. Moreover, we investigate the normal mode splitting in the transmission spectrum of cavity field.  相似文献   

5.
Li-Guo Qin 《中国物理 B》2021,30(6):68502-068502
We present a scheme of reversible waveform conversion between microwave and optical fields in the hybrid opto-electromechanical system. As an intermediate interface, nanomechanical resonator optomechanically couples both optomechanical cavities in the optical and microwave frequency domains. We find the double-optomechanically induced transparency and achieve coherent signal waveform bi-directional transfer between microwave and optical fields based on quantum interference. In addition, we give an analytical expression of one-to-one correspondence between the microwave field and the optical output field, which intuitively shows the reversible waveform conversion relationship. In particular, by numerical simulations and approximate expression, we demonstrate the conversion effects of the three waveforms and discuss the bi-directional conversion efficiency and the bandwidth. such a hybrid opto- and electro-mechanical device has significant potential functions for electro-optic modulation and waveform conversion of quantum microwave-optical field in optical communications and further quantum networks.  相似文献   

6.
严晓波  杨柳  田雪冬  刘一谋  张岩 《物理学报》2014,63(20):204201-204201
研究了在含有光学参量放大器的光力学腔中关于弱探测光的光力诱导透明与本征模劈裂的性质.研究发现,光学参量放大器的驱动场相位和非线性增益值的大小对光力诱导透明窗口宽度和本征模劈裂性质有非常重要的影响,特别是当控制光频率工作在光力学红边带下,通过适当调制相位和非线性增益可以实现比空腔时(没有光学参量放大器时)还狭窄的光力诱导透明窗口,此时伴随着陡峭的色散曲线.这些研究结果有利于在光力耦合系统中实现快慢光、光存储等量子信息处理过程.  相似文献   

7.
The dynamics of a microresonator in detuned whispering-gallery modes (WGM) cavity opto-mechanical system are investigated by the quantum Langevin equation. A WGM cavity coupling to two parallel waveguides is devised to study the transmission and reflection of this system. In single mode WGM cavity, without optomechanical coupling, both the transmission and reflection of the cavity present a Lorentzian dip and peak. When the coupling between the cavity mode and mechanical mode is considered, the transmission and reflection of the optomechanical cavity show “W” and “M” shape mode splitting. Moreover, under the action of a controlling and a probe laser, the output field at the probe frequency presents electromagnetically induced transparency (EIT)-like spectrum in the system. We give the physical origin of EIT-like and the pump-probe response for the WGM shares all the features of the Λ system in atoms. Further, due to backscattering, the two traveling waves in WGM are coupled with a rate γ. The transmission and reflection of the optomechanical cavity display three modes splitting in the spectra with optomechanical coupling between the two cavity modes and the mechanical mode.  相似文献   

8.
We propose a scheme that can generate tunable double optomechanically induced transparency in a hybrid optomechanical cavity system.In this system, the mechanical resonator of the optomechanical cavity is coupled with an additional mechanical resonator and the additional mechanical resonator can be driven by a weak external coherently mechanical driving field.We show that both the intensity and the phase of the external mechanical driving field can control the propagation of the probe field, including changing the transmission spectrum from double windows to a single-window.Our study also provides an effective way to generate intensity-controllable, narrow-bandwidth transmission spectra, with the probe field modulated from excessive opacity to remarkable amplification.  相似文献   

9.
《Physics letters. A》2020,384(7):126153
The optomechanically induced transparency (OMIT), an optomechanical analogue of electromagnetically induced transparency, is a very interesting interference phenomenon. Recently, the studies on the OMIT have been extended to double-OMIT by integrating more optical or mechanical subsystems such as mechanical oscillators, coupled cavities, and atoms in vibrational cavity. In this paper, we demonstrate the double-OMIT can be observed in Laguerre-Gaussian (L-G) rovibrational cavity which was proposed by Bhattacharya et al. (2008) [40], an analog of the double-OMIT in vibrational cavity. The double-OMIT in this research is naturally resulted from a single rovibrational mirror which vibrates and rotates simultaneously, rather than by integrating several subsystems as previously. We numerically examine the influence of the various factors on the double-OMIT and discuss its features and physics behind them in detail. In addition, we discuss the Stokes field generated via the four-wave mixing process in the L-G rovibrational cavity.  相似文献   

10.
Optomechanics describes the interconnection between the terahertz optical field and mechanical microwave field, making it appealing in the context of nanophotonics and quantum information science. Here, the optomechanically induced mode transition and spectrum enhanced phenomenon in an optomechanical microcavity system are studied. An optical filter that is limited by the bandwidth of the mechanical mode is built. The analytical model is presented by considering a microresonator system which supports two electromagnetic modes and a single mechanical mode. Through the filtering of mechanical resonator, the optical spectral width becomes similar to the mechanical resonator bandwidth which can go beyond the limit of the cavity quality factor. It is found that the transition between the optomechanically induced transparency and the optomechanically induced absorption can be observed by tuning the coupling between the microresonator and the waveguide. Moreover, the controllable nonreciprocal excitation of the system can also be observed.  相似文献   

11.
Here, we study the controllable optical responses in a two-cavity optomechanical system, especially on the perfect optomechanically induced transparency (OMIT) in the model which has never been studied before. The results show that the perfect OMIT can still occur even with a large mechanical damping rate, and at the perfect transparency window the long-lived slow light can be achieved. In addition, we find that the conversion between the perfect OMIT and optomechanically induced absorption can be easily achieved just by adjusting the driving field strength of the second cavity. We believe that the results can be used to control optical transmission in modern optical networks.  相似文献   

12.
吴士超  秦立国  景俊  杨国宏  王中阳 《中国物理 B》2016,25(5):54203-054203
We theoretically investigate the optomechanical induced transparency(OMIT) phenomenon in a two-cavity system which is composed of two optomechanical cavities. Both of the cavities consist of a fixed mirror and a high-Q mechanical resonator, and they couple to each other via a common waveguide. We show that in the presence of a strong pump field applied to one cavity and a weak probe field applied to the other, a triple-OMIT can be observed in the output field at the probe frequency. The two mechanical resonators in the two cavities are identical, but they lead to different quantum interference pathways. The transparency windows are induced by the coupling of the two cavities and the optical pressure radiated to the mechanical resonators, which can be controlled via the power of the pump field and the coupling strength of the two cavities.  相似文献   

13.
A tunable multiple windows optomechanically induced transparency (OMIT) with a squeezed field is investigated in a system consisting of an optomechanical cavity coupled to a charged nanomechanical resonator (NAMR) via Coulomb interaction. Such a multiple OMIT can be achieved by adjusting the frequency of the charged NAMR and can be observed even with a single-photon squeezed field. In addition, this multiple OMIT for the quantized fields can be robust against cavity decay and environmental temperature. Specifically, the model under our consideration might be applied to precision measurement the frequency difference of two NAMRs within the reach of current techniques.  相似文献   

14.
We experimentally demonstrate the elementary case of electromagnetically induced transparency with a single atom inside an optical cavity probed by a weak field. We observe the modification of the dispersive and absorptive properties of the atom by changing the frequency of a control light field. Moreover, a strong cooling effect has been observed at two-photon resonance, increasing the storage time of our atoms twenty-fold to about 16 seconds. Our result points towards all-optical switching with single photons.  相似文献   

15.
A new form of induced transparency enabled by dynamical tunneling coupling of continuous chaos and discrete regular modes in a slightly deformed optical microcavity is demonstrated experimentally. An optical beam is focused on the cavity boundary and tuned on resonance with a high‐Q mode, which leads to destructive interference for the excitation of chaotic field and induces a transparency in the transmission. The experimental results are in excellent agreement with a model based on quantum scattering theory. This tunneling‐induced transparency is accompanied by extremely steep normal dispersion, and holds great potential in slow light and enhanced nonlinear interactions.  相似文献   

16.
We theoretically investigate the multistable behavior of a hybrid optomechanical system,in which a charged mechanical resonator is coupled via Coulomb interaction to an optomechanical cavity containing an optical parametric amplifier(OPA).It is shown that the multistable behavior of the mean intracavity photon number can be controlled flexibly by adjusting the nonlinear gain parameter of the OPA,the phase of the field pumping the OPA,the power and frequency of the field driving the cavity,and the Coulomb coupling strength between the two charged mechanical resonators.In particular,the increase of the nonlinear gain parameter can result in a transition from testability to Instability.Moreover,the effect of the Coulomb coupling strength on the bistable behavior of the steady-state positions of the two mechanical resonators is discussed.  相似文献   

17.
We derive the frequency response of a chain of weakly coupled cavities, loaded with three-level quantum systems; one transition of the quantum state is entangled with the cavity mode, and the other one is driven by an external field not related to any cavity mode. In a system composed of photonic crystals and quantum states, we can exploit two quantum optical effects: the first due to a totally destructive interference between an incoming field and the field radiated by a dipole in a cavity in Purcell regime, known as “dipole-induced reflectivity” (DIR) reminiscent of the “dipole-induced transparency” reported by Waks et al. [E. Waks, J. Vuckovic, Dipole induced transparency in Drop-Filter Cavity-Waveguide Systems, Phys. Rev. Lett. 96 (2006) 153601], and the “electromagnetic-induced transparency” (EIT) in a quantum state. We demonstrate that it is possible to design tunable flat response filters using external fields with different Rabi frequency values, and furnish the design guidelines for tunable delay lines with very large bandwidth.  相似文献   

18.
We study theoretically the propagation of slow light in a hybrid BEC–optomechanical system comprising a Bose–Einstein condensate (BEC) trapped inside an optical cavity with a moving end mirror. We show that when the system is driven by a weak probe in the presence of a strong laser field, there exists an analog of the electromagnetically induced transparency (EIT) in coupled BEC–optomechanical systems. When the coupling of the cavity field with a mechanical mirror and the condensate mode is considered simultaneously, three absorption peaks appear in the output spectrum of the probe field. The central absorption peak appears in the reflection spectrum of the weak probe field when the pump-probe detuning occurs at half the sum of frequencies of the two oscillators, which corresponds to the long-live dark state. Furthermore, we also study the occurrence of normal mode splitting in the output spectrum of the probe and Stokes fields.  相似文献   

19.
吴宏伟  米贤武 《中国物理 B》2012,21(10):107102-107102
An approach for solving the excitonic absorption in a semiconductor quantum well driven by an intense terahertz field is presented.The formalism relies on the stationary single-photon Schro¨dinger equation in the full quantum mechanical framework.The optical absorption dynamics in both weak and strong couplings are discussed and compared.The excitonic absorption spectra show the Autler-Townes doublets for the resonance terahertz field,a replica peak for the non-resonance terahertz field,and the electromagnetically induced transparency phenomenon for modulating the decay rate of the second electron state in the weak coupling.In particular,the electromagnetically induced transparency phenomenon window range is discussed.In the strong coupling region,the multi-order energy level resonance splitting due to the strong optical field is found.There are three(non-resonance terahertz field) or four(resonance terahertz field) peaks in the optical absorption spectra.This work provides a simple and convenient approach to deal with the optical absorption in the exciton system.  相似文献   

20.
We show that one can control the path of an optical field propagating in a waveguide with another optical field in a cavity–waveguide system. The strong coupling between the two optical fields is achieved using cavity–QED based on dipole-induced transparency and an optical Stark shift. Numerical simulations suggest that the optical switching is possible even when the intensity of the control field approaches the single photon level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号