首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two-inch Ga_2O_3 films with(ˉ201)-orientation are grown on c-sapphire at 850–1050°C by hydride vapor phase epitaxy. High-resolution x-ray diffraction shows that pure β-Ga_2O_3 with a smooth surface has a higher crystal quality, and the Raman spectra reveal a very small residual strain in β-Ga_2O_3 grown by hydride vapor phase epitaxy compared with bulk single crystal. The optical transmittance is higher than 80% in the visible and near-UV regions, and the optical bandgap energy is calculated to be 4.9 e V.  相似文献   

2.
郑树文  何苗  李述体  章勇 《中国物理 B》2014,23(8):87101-087101
The energy band structures, density of states, and optical properties of IIIA-doped wurtzite Mg0.25Zn0.75O(IIIA= Al,Ga, In) are investigated by a first-principles method based on the density functional theory. The calculated results show that the optical bandgaps of Mg0.25Zn0.75O:IIIAare larger than those of Mg0.25Zn0.75 O because of the Burstein–Moss effect and the bandgap renormalization effect. The electron effective mass values of Mg0.25Zn0.75O:IIIAare heavier than those of Mg0.25Zn0.75 O, which is in agreement with the previous experimental result. The formation energies of MgZnO:Al and MgZnO:Ga are smaller than that of MgZnO:In, while their optical bandgaps are larger, so MgZnO:Al and MgZnO:Ga are suitable to be fabricated and used as transparent conductive oxide films in the ultra-violet(UV) and deep UV optoelectronic devices.  相似文献   

3.
《中国物理 B》2021,30(6):67302-067302
The ultra-wide bandgap semiconductor β gallium oxide(β-Ga_2 O_3) gives promise to low conduction loss and high power for electronic devices. However, due to the natural poor thermal conductivity of β-Ga_2 O_3, their power devices suffer from serious self-heating effect. To overcome this problem, we emphasize on the effect of device structure on peak temperature in β-Ga_2 O_3 Schottky barrier diodes(SBDs) using TCAD simulation and experiment. The SBD topologies including crystal orientation of β-Ga_2 O_3, work function of Schottky metal, anode area, and thickness, were simulated in TCAD, showing that the thickness of β-Ga_2 O_3 plays a key role in reducing the peak temperature of diodes. Hence, we fabricated β-Ga_2 O_3 SBDs with three different thickness epitaxial layers and five different thickness substrates. The surface temperature of the diodes was measured using an infrared thermal imaging camera. The experimental results are consistent with the simulation results. Thus, our results provide a new thermal management strategy for high power β-Ga_2 O_3 diode.  相似文献   

4.
The energy band structures, density of states, and optical properties of IliA-doped wurtzite Mg0.25Zn0.75O (IIIA= A1, Ga, In) are investigated by a first-principles method based on the density functional theory. The calculated results show that the optical bandgaps of Mg0.25Zn0.75O:IIIA are larger than those of Mg0.25Zn0.75O because of the Burstein-Moss effect and the bandgap renormalization effect. The electron effective mass values of Mg0.25Zn0.75O:IIIA are heavier than those of Mgo.25Zno.750, which is in agreement with the previous experimental result. The formation energies of MgZnO:Al and MgZnO:Ga are smaller than that of MgZnO:In, while their optical bandgaps are larger, so MgZnO:Al and MgZnO:Ga are suitable to be fabricated and used as transparent conductive oxide films in the ultra-violet (UV) and deep UV optoelectronic devices.  相似文献   

5.
In this work,(-201) β-Ga_2O_3 films are grown on GaN substrate by metal organic chemical vapor deposition(MOCVD). It is revealed that the β-Ga_2O_3 film grown on GaN possesses superior crystal quality, material homogeneity and surface morphology than the results of common heteroepitaxial β-Ga_2O_3 film based on sapphire substrate. Further, the relevance between the crystal quality of epitaxial β-Ga_2O_3 film and the β-Ga_2O_3/GaN interface behavior is investigated. Transmission electron microscopy result indicates that the interface atom refactoring phenomenon is beneficial to relieve the mismatch strain and improve the crystal quality of subsequent β-Ga_2O_3 film. Moreover, the energy band structure of β-Ga_2O_3/GaN heterostructure grown by MOCVD is investigated by X-ray photoelectron spectroscopy and a large conduction band offset of 0.89 eV is obtained. The results in this work not only convincingly demonstrate the advantages of β-Ga_2O_3 films grown on GaN substrate, but also show the great application potential of MOCVD β-Ga_2O_3/GaN heterostructures in microelectronic applications.  相似文献   

6.
《中国物理 B》2021,30(5):57301-057301
Si-doped β-Ga_2O_3 films are fabricated through metal-organic chemical vapor deposition(MOCVD). Solar-blind ultraviolet(UV) photodetector(PD) based on the films is fabricated by standard photolithography, and the photodetection properties are investigated. The results show that the photocurrent increases to 11.2 m A under 200 μW·cm-2254 nm illumination and ±20 V bias, leading to photo-responsivity as high as 788 A·W~(-1). The Si-doped β-Ga_2O_3-based PD is promised to perform solar-blind photodetection with high performance.  相似文献   

7.
《中国物理 B》2021,30(5):56110-056110
The electrical characteristics and microstructures of β-Ga_2 O_3 Schottky barrier diode(SBD) devices irradiated with swift heavy ions(2096 Me V Ta ions) have been studied. It was found that β-Ga_2 O_3 SBD devices showed the reliability degradation after irradiation, including turn-on voltage Von, on-resistance Ron, ideality factor n, and the reverse leakage current density Jr. In addition, the carrier concentration of the drift layer was decreased significantly and the calculated carrier removal rates were 5 × 10~6–1.3 × 10~7 cm~(-1). Latent tracks induced by swift heavy ions were observed visually in the whole β-Ga_2 O_3 matrix. Furthermore, crystal structure of tracks was amorphized completely. The latent tracks induced by Ta ions bombardments were found to be the reason for the decrease in carrier mobility and carrier concentration. Eventually,these defects caused the degradation of electrical characteristics of the devices. In terms of the carrier removal rates, theβ-Ga_2 O_3 SBD devices were more sensitive to swift heavy ions irradiation than Si C and Ga N devices.  相似文献   

8.
刘兴钊  岳超  夏长泰  张万里 《中国物理 B》2016,25(1):17201-017201
High-resistivity β-Ga_2O_3 thin films were grown on Si-doped n-type conductive β-Ga_2O_3 single crystals by molecular beam epitaxy(MBE).Vertical-type Schottky diodes were fabricated,and the electrical properties of the Schottky diodes were studied in this letter.The ideality factor and the series resistance of the Schottky diodes were estimated to be about1.4 and 4.6×10~6 Ω.The ionized donor concentration and the spreading voltage in the Schottky diodes region are about4×10~(18)cm~(-3) and 7.6 V,respectively.The ultra-violet(UV) photo-sensitivity of the Schottky diodes was demonstrated by a low-pressure mercury lamp illumination.A photoresponsivity of 1.8 A/W and an external quantum efficiency of8.7 ×10~2%were observed at forward bias voltage of 3.8 V,the proper driving voltage of read-out integrated circuit for UV camera.The gain of the Schottky diode was attributed to the existence of a potential barrier in the i-n junction between the MBE-grown highly resistive β-Ga_2O_3 thin films and the n-type conductive β-Ga_2O_3 single-crystal substrate.  相似文献   

9.
Ultraviolet(UV) photodetectors(PDs) have drawn great attention in recent years due to their potential application in civil and military fields. Because of its ultrawide bandgap, low cost, strong radiation hardness, and high thermal and chemical stability with high visible-light transparency, Ga_2O_3 is regarded as the most promising candidate for UV detection.Furthermore, the bandgap of Ga_2O_3 is as high as 4.7–4.9 eV, directly corresponding to the solar-blind UV detection band with wavelength less than 280 nm. There is no need of doping in Ga_2O_3 to tune its bandgap, compared to AlGaN, MgZnO,etc, thereby avoiding alloy composition fluctuations and phase separation. At present, solar-blind Ga_2O_3 photodetectors based on single crystal or amorphous Ga_2O_3 are mainly focused on metal–semiconductor–metal and Schottky photodiodes.In this work, the recent achievements of Ga_2O_3 photodetectors are systematically reviewed. The characteristics and performances of different photodetector structures based on single crystal Ga_2O_3 and amorphous Ga_2O_3 thin film are analyzed and compared. Finally, the prospects of Ga_2O_3 UV photodetectors are forecast.  相似文献   

10.
马海林  范多旺  牛晓山 《中国物理 B》2010,19(7):76102-076102
Monoclinic gallium oxide (β-Ga_2O_3) nanobelts are synthesized from gallium and oxygen by thermal evaporation in an argon atmosphere and their NO_2 sensing properties are studied at room temperature.Electron microscopy studies show that the nanobelts have breadths ranging from 30 to 50 nm and lengths up to tens of micrometers.Both the x-ray diffraction (XRD) and the selected are electron diffraction (SAED) examinations indicate that β-Ga_2O_3 nanobelts have grown into single crystals.Room temperature NO_2 sensing tests show that the current of individual β-Ga_2O_3 nanobelt decreases quickly,and then gently when the NO_2 concentration increases from low to high.It is caused by the NO_2 molecule chemisorption and desorption processes in the surface of β-Ga_2O_3 nanobelt.  相似文献   

11.
Heterojunctions composed of β-Ga_2 O_3 and ZnO films are fabricated on sapphire substrates by using the laser molecular beam epitaxy method. The heterojunction possesses excellent rectifying characteristics with an asymmetry ratio over 105. Prominent solar-blind photoresponse effect is also observed in the formed heterojunction. The photodetector exhibits a self-powered behavior with a fast response speed(rise time and decay time are 0.035 s and 0.032 s respectively) at zero bias. The obtained high performance can be related to the built-in field driven photogenerated electron-hole separation.  相似文献   

12.
To study the room-temperature stable defects induced by electron irradiation, commercial borosilicate glasses were irradiated by 1.2 Me V electrons and then ultraviolet(UV) optical absorption(OA) spectra were measured. Two characteristic bands were revealed before irradiation, and they were attributed to silicon dangling bond(E'-center) and Fe3+species,respectively. The existence of Fe3+was confirmed by electron paramagnetic resonance(EPR) measurements. After irradiation, the absorption spectra revealed irradiation-induced changes, while the content of E'-center did not change in the deep ultraviolet(DUV) region. The slightly reduced OA spectra at 4.9 e V was supposed to transform Fe3+species to Fe2+species and this transformation leads to the appearance of 4.3 e V OA band. By calculating intensity variation, the transformation of Fe was estimated to be about 5% and the optical absorption cross section of Fe2+species is calculated to be 2.2 times larger than that of Fe3+species. Peroxy linkage(POL, ≡Si–O–O–Si≡), which results in a 3.7 e V OA band, is speculated not to be from Si–O bond break but from Si–O–B bond, Si–O–Al bond, or Si–O–Na bond break. The co-presence defect with POL is probably responsible for 2.9-e V OA band.  相似文献   

13.
Improving brittle behavior and mechanical properties is still a big challenge for high-temperature structural materials.By means of first-principles calculations,in this paper,we systematically investigate the effect of vacancy and oxygen occupation on the elastic properties and brittle-orductile behavior on Mo_5Si_3.Four vacancies (Si_(–Va1),Si_(–Va2),Mo_(–Va1),Mo_(–Va2)) and oxygen occupation models (O_(–Mo1),O_(–Mo2),O_(–Si1),O_(–Si2)) are selected for research.It is found that Mo_(–Va2)vacancy has the stronger structural stability in the ground state in comparison with other vacancies.Besides,the deformation resistance and hardness of the parent Mo_5Si_3are weakened due to the introduction of different vacancy defects and oxygen occupation.The ratio of B/G indicates that oxygen atoms occupation and vacancy defects result in brittle-to-ductile transition for Mo_5Si_3.These vacancies and the oxygen atoms occupation change the localized hybridization between Mo–Si and Mo–Mo atoms.The weaker O–Mo bond is a contributing factor for the excellent ductile behavior in the O_(-Si2)model for Mo_5Si_3.  相似文献   

14.
In this paper, A12O3 ultrathin film used as the surface passivation layer for Al Ga N/Ga N high electron mobility transistor(HEMT) is deposited by thermal atomic layer deposition(ALD), thereby avoiding plasma-induced damage and erosion to the surface. A comparison is made between the surface passivation in this paper and the conventional plasma enhanced chemical vapor deposition(PECVD) Si N passivation. A remarkable reduction of the gate leakage current and a significant increase in small signal radio frequency(RF) performance are achieved after applying Al2O3+BCB passivation.For the Al2O3+BCB passivated device with a 0.7 μm gate, the value of f max reaches up to 100 GHz, but it decreases to 40 GHz for Si N HEMT. The f max/ f t ratio(≥ 4) is also improved after Al2O3+BCB passivation. The capacitance–voltage(C–V) measurement demonstrates that Al2O3+BCB HEMT shows quite less density of trap states(on the order of magnitude of 1010cm-2) than that obtained at commonly studied Si N HEMT.  相似文献   

15.
Single-crystal GaN layers have been obtained by nitriding β-Ga_2O_3 films in NH_3 atmosphere. The effect of the temperature and time on the nitridation and conversion of Ga_2O_3 films have been investigated. The nitridation process results in lots of holes in the surface of films. The higher nitridation temperature and longer time can promote the nitridation and improve the crystal quality of GaN films. The converted Ga N porous films show the single-crystal structures and lowstress, which can be used as templates for the epitaxial growth of high-quality GaN.  相似文献   

16.
According to the density functional theory we systematically study the electronic structure, the mechanical prop- erties and the intrinsic hardness of Si2N2O polymorphs using the first-principles method. The elastic constants of four Si2N2O structures are obtained using the stress-strain method. The mechanical moduli (bulk modulus, Young’s mod-ulus, and shear modulus) are evaluated using the Voigt-Reuss-Hill approach. It is found that the tetragonal Si2N2O exhibits a larger mechanical modulus than the other phases. Some empirical methods are used to calculate the Vickers hardnesses of the Si2N2O structures. We further estimate the Vickers hardnesses of the four Si2N2O crystal structures, suggesting all Si2N2O phases are not the superhard compounds. The results imply that the tetragonal Si2N2O is the hardest phase. The hardness of tetragonal Si2N2O is 31.52 GPa which is close to values of β-Si3N4 and γ-Si3N4.  相似文献   

17.
《中国物理 B》2021,30(7):78102-078102
The self-catalyzed growth of Ga As nanowires(NWs) on silicon(Si) is an effective way to achieve integration between group III–V elements and Si. High-crystallinity uniform Ga As NW arrays were grown by solid-source molecular beam epitaxy(MBE). In this paper, we describe systematic experiments which indicate that the substrate treatment is crucial to the highly crystalline and uniform growth of one-dimensional nanomaterials. The influence of natural oxidation time on the crystallinity and uniformity of Ga As NW arrays was investigated and is discussed in detail. The Ga As NW crystallinity and uniformity are maximized after 20 days of natural oxidation time. This work provides a new solution for producing high-crystallinity uniform III–V nanowire arrays on wafer-scale Si substrates. The highly crystalline uniform NW arrays are expected to be useful for NW-based optical interconnects and Si platform optoelectronic devices.  相似文献   

18.
Ta~(5+)doped β-Ga_2O_3 single crystals were grown by using the optical floating zone method, and then annealed in the air and nitrogen gas at 1400℃ for 20 hours.The transmittance spectra, photoluminescence(PL), x-ray irradiation spectra, and PL decay profiles of the samples were measured at room temperature.The relevant results show that the optical transmittance of the samples annealed in the air or nitrogen gas was improved.By drawing the(ahv)~2–hv graph,it can be seen that the band gap decreased after being annealed in the air, but increased in nitrogen gas.The PL spectra and x-ray irradiation spectra show that the luminescent intensity of the sample annealed in the air increased substantially,while decreased for the sample annealed in nitrogen.The PL decay time of the Ta:β-Ga_2O_3 annealed in the air increased significantly compared with that of the Ta:β-Ga_2O_3 sample without annealing, but the tendency after annealing in nitrogen gas was opposite.  相似文献   

19.
Pure ZnO and indium-doped ZnO(In–ZO) nanoparticles with concentrations of In ranging from 0 to 5% are synthesized by a sol–gel processing technique. The structural and optical properties of ZnO and In–ZO nanoparticles are characterized by different techniques. The structural study confirms the presence of hexagonal wurtzite phase and indicates the incorporation of In~(3+) ions at the Zn~(2+) sites. However, the optical study shows a high absorption in the UV range and an important reflectance in the visible range. The optical band gap of In–ZnO sample varies between 3.16 e V and 3.22 e V. The photoluminescence(PL) analysis reveals that two emission peaks appear: one is located at 381 nm corresponding to the near-band-edge(NBE) and the other is observed in the green region. The aim of this work is to study the effect of indium doping on the structural, morphological, and optical properties of ZnO nanoparticles.  相似文献   

20.
The crystal structure and Raman spectra of quartz are calculated by using first-principles method in a pressure range from 0 to 5 GPa. The results show that the lattice constants(a, c, and V) decrease with increasing pressure and the a-axis is more compressible than the c axis. The Si–O bond distance decreases with increasing pressure, which is in contrast to experimental results reported by Hazen et al. [Hazen R M, Finger L W, Hemley R J and Mao H K 1989 Solid State Communications 725 507–511], and Glinnemann et al. [Glinnemann J, King H E Jr, Schulz H, Hahn T, La Placa S J and Dacol F 1992 Z. Kristallogr. 198 177–212]. The most striking changes are of inter-tetrahedral O–O distances and Si–O–Si angles. The volume of the Si O4-4tetrahedron decreased by 0.9%(from 0 to 5 GPa), which suggests that it is relatively rigid.Vibrational models of the quartz modes are identified by visualizing the associated atomic motions. Raman vibrations are mainly controlled by the deformation of the Si O4-4tetrahedron and the changes in the Si–O–Si bonds. Vibrational directions and intensities of atoms in all Raman modes just show little deviations when pressure increases from 0 to 5 GPa.The pressure derivatives(dνi/d P) of the 12 Raman frequencies are obtained at 0 GPa–5 GPa. The calculated results show that first-principles methods can well describe the high-pressure structural properties and Raman spectra of quartz. The combination of first-principles simulations of the Raman frequencies of minerals and Raman spectroscopy experiments is a useful tool for exploring the stress conditions within the Earth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号