首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The complexes between H2O, D2O, HOD and pyridine have been studied in 1,2-dichloroethane by FT-IR spectrometry. Equal splittings of the stretching bands of H2O and D2O about their uncoupled vibrations are observed. The coupling between the asymmetric and symmetric vibrations reaches a value of zero when the band separation is greater than 500 cm?1 for the OH vibrations and 365 cm?1 for the OD vibrations. The vOH stretching frequencies of the HOD ‥ complexes and the vOD stretching frequencies of the DOH‥ complexes increase by complex formation. These features are explained by an electronic reorganization within the hydrogen bond.  相似文献   

2.
ABSTRACT

Raman spectra of the uranyl-containing mineral coconinoite, Fe2Al2(UO2)2(PO4)4(SO4)(OH)2 · 20H2O, are presented and compared with the mineral's infrared spectra. Bands connected with (UO2)2+, (PO4)3?, (SO4)2?, (OH)?, and H2O stretching and bending vibrations are assigned. Approximate U?O bond lengths in uranyl, (UO2)2+, and O?H…O hydrogen bond lengths are calculated from the wavenumbers of the U?O stretching vibrations and (OH)? and H2O stretching vibrations, respectively, and compared with published data for similar natural and synthetic compounds.  相似文献   

3.
Raman spectroscopy has been used to study the arsenate minerals haidingerite Ca(AsO3OH)·H2O and brassite Mg(AsO3OH)·4H2O. Intense Raman bands in the haidingerite spectrum observed at 745 and 855 cm−1 are assigned to the (AsO3OH)2−ν3 antisymmetric stretching and ν1 symmetric stretching vibrational modes. For brassite, two similarly assigned intense bands are found at 809 and 862 cm−1. The observation of multiple Raman bands in the (AsO3OH)2− stretching and bending regions suggests that the arsenate tetrahedrons in the crystal structures of both minerals studied are strongly distorted. Broad Raman bands observed at 2842 cm−1 for haidingerite and 3035 cm−1 for brassite indicate strong hydrogen bonding of water molecules in the structure of these minerals. OH···O hydrogen‐bond lengths were calculated from the Raman spectra based on empirical relations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
The infrared spectra of eighteen complexes of general formula trans-[Co(NO2) (acac)2 (R-C6H4NH2)] (acac = acetylacetonate anion, R = 3- or 4-aniline substituent) are discussed. 15N-Labelling of the complexes containing aniline and p-toluidine yields assignments of the N-H, C-N and Co-N stretching frequencies and the N-H bending frequencies. These assignments receive support from the observed frequency shifts induced by varying the substituent R which also permits the assignment of the Co-o stretching frequencies.  相似文献   

5.
Molecular vibrations of C2H2 and C2D2 adsorbed on Pt(111) at 140 K and ∼300K have been measured by high resolution electron energy loss spectroscopy. The comparison of C2H2 and C2D2 spectra allows an unambiguous assignment of the observed losses to the excitation of C−H bending, C−H stretching, and C−C stretching modes of nondissociatively adsorbed acetylene. From the relative intensities of losses the hybridisation state is determined to be nearsp 2. The C−C stretching frequency indicates a C−C bond order of ∼1.8.  相似文献   

6.
Raman spectra of metauranospinite Ca[(UO2)(AsO4)]2·8H2O complemented with infrared spectra were studied. Observed bands were assigned to the stretching and bending vibrations of (UO2)2+ and (AsO4)3− units and of water molecules. U O bond lengths in uranyl and O H···O hydrogen bond lengths were calculated from the Raman and infrared spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Raman spectra of the uranyl titanate mineral betafite were obtained and related to the mineral structure. A comparison is made with the spectra of uranyl oxyhydroxide hydrates. Observed bands are attributed to the (UO2)2+ stretching and bending vibrations, U–OH bending vibrations and H2O and (OH)? stretching, bending and libration modes. U–O bond lengths in uranyls and O?H···O bond lengths are calculated from the wavenumbers assigned to the stretching vibrations. Raman bands of betafite are comparable with those of the uranyl oxyhydroxides. The mineral betafite is metamict as is evidenced by the intensity of the UO stretching and bending modes being of lower intensity than expected and by bands that are significantly broader.  相似文献   

8.
Raman spectrum of burgessite, Co2(H2O)4[AsO3OH]2· H2O, was studied, interpreted and compared with its infrared spectrum. The stretching and bending vibrations of (AsO3) and As‐OH units, as well as the stretching, bending and libration modes of water molecules and hydroxyl ions were assigned. The range of O H···O hydrogen bond lengths was inferred from the Raman and infrared spectra of burgessite. The presence of (AsO3OH)2− units in the crystal structure of burgessite was proved, which is in agreement with its recently solved crystal structure. Raman and infrared spectra of erythrite inferred from the RRUFF database are used for comparison. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The Raman spectrum of bukovskýite [Fe3+2(OH)(SO4)(AsO4)· 7H2O] has been studied and compared with that of an amorphous gel containing specifically Fe, As and S, which is understood to be an intermediate product in the formation of bukovskýite. The observed bands are assigned to the stretching and bending vibrations of (SO4)2− and (AsO4)3− units, stretching and bending vibrations and vibrational modes of hydrogen‐bonded water molecules, stretching and bending vibrations of hydrogen‐bonded (OH) ions and Fe3+ (O,OH) units. The approximate range of O H···O hydrogen bond lengths was inferred from the Raman spectra. Raman spectra of crystalline bukovskýite and of the amorphous gel differ in that the bukovskýite spectrum is more complex, the observed bands are sharp and the degenerate bands of (SO4)2− and (AsO4)3− are split and more intense. Lower wavenumbers of δ H2O bending vibrations in the spectrum of the amorphous gel may indicate the presence of weaker hydrogen bonds compared to those in bukovskýite. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Raman spectra of the uranyl titanate mineral brannerite were analysed and related to the mineral structure. A comparison is made with the Raman spectra of uranyl oxyhydroxide hydrates. The observed bands are attributed to the TiO and (UO2)2+ stretching and bending vibrations, U OH bending vibrations, as well as H2O and (OH) stretching, bending and libration modes. U O bond lengths in uranyls and O H···O bond lengths were calculated from the wavenumbers assigned to the stretching vibrations. Raman bands of brannerite are in harmony with those of the uranyl oxyhydroxides. The mineral brannerite is metamict, as is evidenced by the intensity of the UO stretching and bending modes being of lower intensity than expected and with bands that are significantly broader. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
The mineral marthozite, a uranyl selenite, has been characterised by Raman spectroscopy at 298 K. The bands at 812 and 797 cm−1 were assigned to the symmetric stretching modes of the (UO2)2+ and (SeO3)2− units, respectively. These values gave the calculated U O bond lengths in uranyl of 1.799 and/or 1.814 Å. Average U O bond length in uranyl is 1.795 Å, inferred from the X‐ray single crystal structure analysis of marthozite by Cooper and Hawthorne. The broad band at 869 cm−1 was assigned to the ν3 antisymmetric stretching mode of the (UO2)2+ (calculated U O bond length 1.808 Å). The band at 739 cm−1 was attributed to the ν3 antisymmetric stretching vibration of the (SeO3)2− units. The ν4 and the ν2 vibrational modes of the (SeO3)2− units were observed at 424 and 473 cm−1. Bands observed at 257, and 199 and 139 cm−1 were assigned to OUO bending vibrations and lattice vibrations, respectively. O H···O hydrogen bond lengths were inferred using Libowiztky's empirical relation. The infrared spectrum of marthozite was studied for complementation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Abstract

The Fourier transform (FT) infrared and Raman spectra of newberyite, MgHPH4 - 3H2O are studied in the region where the stretching vibrations of the water molecules (protiated and deuterated) and the O-H/O-D stretches of the hydrogenphosphate anions are expected to appear. The O-H stretching vibrations give rise to a complex feature known as the A,B,C trio. Since neither of the maxima found below 3000 cm?1 represents a true band arising from a given fundamental, it is pointless to correlate their frequencies with the observed O…O distances. In the water stretching region, the two bands with highest frequencies undoubtedly correspond to the anti symmetric and symmetric stretch of one type of the water molecules. The stretching vibrations of one of the remaining two types of H2O molecules are clearly uncoupled and the O-H oscillator involved in the weaker hydrogen bond is responsible for a band at 3376 cm?1 whereas the rest of the water stretchings are apparently overlapped yielding the complex band below 3320 cm?1. Thus the situation is again complicated and the correlations between the frequencies and the Ow…O distances are inappropriate. The two bands at highest frequencies (3522 and 3483 cm?1 at RT) exhibit a positive temperature coefficient.

  相似文献   

13.
Raman spectra of jáchymovite, (UO2)8(SO4)(OH)14·13H2O, were studied, complemented with infrared spectra, and compared with published Raman and infrared spectra of uranopilite, [(UO2)6(SO4)O2(OH)6(H2O)6]·6H2O. Bands related to the stretching and bending vibrations of (UO2)2+, (SO4)2−, (OH) and water molecules were assigned. U O bond lengths in uranyl and O H· · ·O hydrogen bond lengths were calculated from the Raman and infrared spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Raman spectra of pseudojohannite were studied and related to the structure of the mineral. Observed bands were assigned to the stretching and bending vibrations of (UO2)2+ and (SO4)2− units and of water molecules. The published formula of pseudojohannite is Cu6.5(UO2)8[O8](OH)5[(SO4)4]·25H2O. Raman bands at 805 and 810 cm−1 are assigned to (UO2)2+ stretching modes. The Raman bands at 1017 and 1100 cm−1 are assigned to the (SO4)2− symmetric and antisymmetric stretching vibrations. The three Raman bands at 423, 465 and 496 cm−1 are assigned to the (SO4)2−ν2 bending modes. The bands at 210 and 279 cm−1 are assigned to the doubly degenerate ν2 bending vibration of the (UO2)2+ units. U O bond lengths in uranyl and O H···O hydrogen bond lengths were calculated from the Raman and infrared spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Vibrational wavenumbers (IR and Raman) have been calculated for the diperiodate ion H4I2O102− on the basis of a DFT method and assigned to experimental wavenumbers obtained from CuH4I2O10·6H2O. To obtain vibrational wavenumbers in the range comparable to the experiment it was necessary to use the complex [(H4I2O10)7(Cu(H2O)6)6]2−. Smaller complexes lead to much too high wavenumbers for the O‐H stretching vibrations and to too small wavenumbers in the range of the internal vibrations of the anion. On the basis of the results of the calculations an assignment of the Raman lines observed for CuH4I2O10· 6H2O to the vibrational modes is given. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
ABSTRACT

A computational study of the complexes F?/H2O…Z-aziridine, Z-aziridine…BeH2/MgH2 and F?/H2O…Z-aziridine…BeH2 /MgH2 (Z = Cl, H, Li) was undertaken in order to investigate the non-covalent interactions operative in the dimers and to assess their interplay in the trimer complexes. The halogen- and hydrogen-bonds between the O and Z atoms in F?/H2O…Z-aziridine are enhanced in the trimers by the Be(Mg) bond and vice versa, but the lithium bond is hardly affected. In the trimers containing F?, the H bond is more dominant than the Be(Mg) bond, whereas the Be(Mg) bond is more dominant in the halogen- and lithium-bonded analogues. On the other hand, the Be(Mg) bond makes the major contribution to the energetic stability of all of the trimers containing H2O.  相似文献   

17.
The Raman spectra of synthetic compounds equivalent to the variscite group: FeAsO4·2H2O AlAsO4·2H2O, GaAsO4·2H2O, and InAsO4·2H2O are reported. In particular, upon comparison of FeAsO4·2H2O to AlAsO4·2H2O, it is observed that the Type II (weak) H‐bond lengths in the latter are slightly longer, which is postulated to affect the stability (As release) in water at pH 5 and 7. Arsenate stretching and bending vibrations were found to be distinct in terms of spectral structure and therefore well suited for fingerprinting. The calculated As O bond strengths from existing crystallographic data showed no significant variations. The strongest ν1 (AsO43−) stretch was used to monitor the As O bonding interactions in the four As O M units, where a shift of 114 cm−1 was observed in the order FeAsO4·2H2O (lowest) < InAsO4·2H2O < GaAsO4·2H2O < AlAsO4·2H2O (highest); this order also followed exactly the measured arsenic release of these phases. This shift in ν1 (AsO43−) position was rationalized to stem from the differences in the electronegativities of the M3+ cations. The trends mentioned above were verified and found to also hold for the isostructural phosphate analogues strengite (FePO4·2H2O) and variscite (AlPO4·2H2O) using published data. Therefore, it is postulated that, as observed with the stability of solution complexes, there may be a correlation between the electronegativity of the M3+ cation in these isostructural phases and their stability (As or P release) in water. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Ab initio symmetry and internal valence coordinate oxygen–proton and proton–proton spin–spin coupling surfaces for the water molecule have been computed for the first time. Calculations have been performed at the SOPPA (CCSD) level using a large basis set and a grid of forty-nine geometries on the two surfaces. Equilibrium values differ significantly from some other calculated values especially for the Fermi contact terms. The bond length dependence of J(O, H) is ‘normal’ i.e. J(O, H1) is much more sensitive to stretching the O–H1 bond than the O–H2 bond. This contrasts greatly with the corresponding situation in methane.

The surfaces have been averaged over the nuclear motion using a recent highly accurate force field to give values of J (O, H) and J (O, D) for H2 17O, HD17O and D2 17O and J(H, D) for HD16O, HD17O and HD18O over a range of temperatures. For J (O, H) and J (O, D) bond stretching at first order is the dominant part of the nuclear motion correction with second order bending making an important contribution. For J (H, D) the second order bending is by far the largest contribution to the nuclear motion corrections although the other terms partially cancel this contribution. Non-additivity can be largely attributed to the bending term for J (O, H). As expected, the bending terms also contribute relatively more to the temperature dependence of the couplings for J (O, H), J (O, D) and J (H, D). Our calculated J (O, H) in H2 17O of -77.22Hz at 293K is in very good agreement with Wasylishen and Friedrich's observed value of -78.70 (±0.02) Hz in cyclohexane at this temperature. Our calculated J(H, D) in HD 16O at 323K of -1.233Hz is close to a recent experimental value of -1.114 (±0.003) Hz in nitromethane-d 3 observed by Sergeyev et al. at that temperature.  相似文献   

19.
Raman spectroscopy, complemented with infrared spectroscopy of compounds equivalent to reevesite, formula (Ni,Co)6Fe2(OH)16(CO3)·4H2O, with the ratio of Ni/Co ranging from 0 to 1, have been synthesised and characterised based on the molecular structure of the synthesised mineral. The combination of Raman spectroscopy with infrared spectroscopy enables an assessment of bands attributable to water stretching and brucite‐like surface hydroxyl units to be obtained. Raman spectroscopy shows a reduction in the symmetry of the carbonate anion, leading to the conclusion that the carbonate anion is bonded to the brucite‐like hydroxyl surface and to the water in the interlayer. Variation in the position of the carbonate anion stretching vibrations occurs and is dependent on the Ni/Co ratio. Water bending modes are identified in both the Raman and infrared spectra at positions greater than 1620 cm−1, indicating that water is strongly hydrogen bonded to both the interlayer anions and the hydrotalcite surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Abstract

The infrared spectra (700–100 cm?1) of the complexes [M(ox)2(H2O)2] (ox = 8-hydroxyquinolinate anion, M = Mn, Fe, Co, Ni, Cu, Zn) are discussed. For the purposes of assignment of the metal ligand modes, deuterated 8-hydroxyquinoline-d 7 was prepared by the Skraup synthesis and the spectra of the deuterated complexes were compared with those of the unlabelled species. Furthermore, [64Zn(ox)2(H2O)2] and [68Zn(ox)2(H2O)2] were prepared by reaction of 64ZnSO4 and 68ZnSO4 with 8-hydroxyquinoline and the effects of metal isotope labelling on the spectra were examined and compared with earlier isotopic data on the nickel and zinc complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号