首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As one of the important factors which affect the properties and applications of conducting polymers, the electrical conductivity of a poly(3,4-ethylenedoxy-thiophene)/ poly(styrene sulfonate) (PEDOT: PSS) blend was adjusted by using various amount of an organic solvent (N,N-dimethyl formamide, DMF) as an additive. The conductivities of PEDOT: PSS thin films can be increased dramatically, from 1.0 S to 32.1 S cm?1, with a 2/1 volume ratio of PEDOT: PSS/DMF loading after totally removing the organic solvent by annealing the film at 80° for 48 h in a vacuum oven. The optical contrasts of transmissive and reflective devices assembled using DMF-modified PEDOT: PSS as active layers exhibited a close relationship with the conductivity of PEDOT: PSS. Interestingly, high conductivity of PEDOT: PSS enhanced the contrast of a transmissive device, while high conductivity of PEDOT: PSS decreased the contrasts of a reflective device. The underlying reason is related to the different electrochromic mechanisms of these two types of device configurations.  相似文献   

2.
The mineral lewisite, (Ca, Fe, Na)2(Sb, Ti)2O6(O, OH)7, an antimony-bearing mineral, has been studied by Raman spectroscopy. A comparison is made with the Raman spectra of other minerals, including bindheimite, stibiconite, and roméite. The mineral lewisite is characterised by an intense sharp band at 517 cm?1 with a shoulder at 507 cm?1 assigned to SbO stretching modes. Raman bands of medium intensity for lewisite are observed at 300, 356, and 400 cm?1. These bands are attributed to OSbO bending vibrations. Raman bands in the OH stretching region are observed at 3200, 3328, 3471 cm?1, with a distinct shoulder at 3542 cm?1. The latter is assigned to the stretching vibration of OH units. The first three bands are attributed to water stretching vibrations. The observation of bands in the 3200–3500 cm?1 region suggests that water is involved in the lewisite structure. If this is the case then the formula may be better written as (Ca, Fe2+, Na)2(Sb, Ti)2(O, OH)7 xH2O.  相似文献   

3.
Abstract

The results of Molecular Dynamics simulations of borate glass (B2O3) using three-particle interactions are presented. These calculations yield a glass consisting of randomly connected BO3 triangles. Infrared and Raman spectra have been calculated and compared with experimental spectra. The calculated infrared spectra show two main bands, one at 650 cm?1 and one at 1250 cm?1, in agreement with experiment. The Raman spectra reproduce the experimental peak at 805 cm?1 but the peak width is a factor of ten too large. Apparently, the simulated glasses have less short range order than the laboratory glasses.  相似文献   

4.
ABSTRACT

Raman spectroscopy has been used successfully in the identification of the alkaloid dihydrochelerytrine due to the assignment of specific key marker bands in the region between 1000 and 1600 cm?1. The Raman spectrum obtained from the crude hexane extract of the roots of Zanthoxylum stelligerum, and excited with 1064 nm, provides very good molecular information, as can be seen by the comparison between the Raman spectra of the standard dihydrochelerytrine and the crude extract, where the keymarker bands are present in both spectra.  相似文献   

5.
Abstract

Normal unenhanced Raman spectra (NURS) of low-polarizability CO molecules were observed for the first time on cobalt at R. T. and residual gas pressure. We assign five bands observed between 2030–2130 cm?1 to linear chemisorbed CO species, while those observed between 1840–2010 cm?1 have been ascribed to the 2-fold chemisorbed species. The three bands observed between 1740–1830 cm?1 we believe are due to the 3-fold species. The corresponding fourteen Co-C stretches were observed and assigned. A model based upon electron backdonation is proposed for each of the three structures. NURS were also observed at R. T. for physisorbed CH4 and assignments are made to the four frequencies of CH4.  相似文献   

6.
The effect of 100 keV N+ ions implantation on the surface structure and hardness of poly (allyl diglycol carbonate) (CR-39) polymer was studied. The surface hardness of virgin and implanted CR-39 specimens was determined using a Knoop microhardness test. The surface hardness was found to be enhanced after implantation, e.g., becoming eight times higher at a load of 9.8 mN, for a dose of 2 × 1016 ions cm?2. The change in bonding and surface structure of the CR-39 polymer due to implantation was studied using the specular reflectance Fourier transform infrared (FTIR) technique. The disordering produced in the implanted matrix was estimated using the Urbach edge method from the UV-Visible absorption spectra. The relationship of surface hardening with the chemical and structural changes was explored  相似文献   

7.
Abstract

The molybdate‐bearing mineral szenicsite, Cu3(MoO4)(OH)4, has been studied by Raman and infrared spectroscopy. A comparison of the Raman spectra is made with those of the closely related molybdate‐bearing minerals, wulfenite, powellite, lindgrenite, and iriginite, which show common paragenesis. The Raman spectrum of szenicsite displays an intense, sharp band at 898 cm?1, attributed to the ν1 symmetric stretching vibration of the MoO4 units. The position of this particular band may be compared with the values of 871 cm?1 for wulfenite and scheelite and 879 cm?1 for powellite. Two Raman bands are observed at 827 and 801 cm?1 for szenicsite, which are assigned to the ν3(E g ) vibrational mode of the molybdate anion. The two MO4 ν2 modes are observed at 349 (B g ) and 308 cm?1 (A g ). The Raman band at 408 cm?1 for szenicsite is assigned to the ν4(E g ) band. The Raman spectra are assigned according to a factor group analysis and are related to the structure of the minerals. The various minerals mentioned have characteristically different Raman spectra.  相似文献   

8.
Poly(acrylonitrile)/cellulose block copolymer (PAN-b-cell) was prepared by using a free radical initiating process and then the nitrile functional groups of the PAN blocks of the copolymers were transformed into amidoxime ligands. The resulting poly(amidoxime) ligands could complex with heavy metal ions; for example, the reflectance spectra of the [Cu -ligand]n+ was found to be at the highest absorbance, about 94%, at pH 6. The pH was the key parameter for metal ions sensing by the ligand. The adsorption capacity for copper was very good, 272 mg g?1, with a fast adsorption rate (t1/2 = 10 min). The adsorption capacities for other heavy metal ions such as Fe3+, Cr3+, Co3+ and Ni2+ were also good, being 242, 219, 201 and 195 mg g?1, respectively, at pH 6. The heavy metal ions removal efficiency from water was 98% at low concentration. The data proved that the heavy metal ions adsorption onto the polymer ligands were well fitted with the Langmuir isotherm model (R2>0.99), which suggests that the cellulose-based adsorbent surface namely the poly(amidoxime) ligand, was homogenous and a monolayer. The reusability was examined by a sorption/desorption process for six cycles and the extraction efficiency was determined. This new adsorbent could be reused for 6 cycles without any significant loss in its original removal function.  相似文献   

9.
ABSTRACT

The mixed metal fluorides containing alkali metals have a range of important applications in optical and electronic devices. Raman spectrums of two such fluorides were examined. Raman spectrum of KCuF3 at 300 K exhibited bands at 261, 295, 363, 468, 519, and 549 cm?1, indicating site symmetry (orthorhombic) lower than the tetragonal symmetry as observed from the powder X-ray diffraction pattern. Cubic KNiF3 showed bands at 410, 468, and 657 cm?1. The first two bands were attributed to the second-order phonon scattering, and the band at 657 cm?1 was assigned to two-magnon peak.  相似文献   

10.
Abstract: Raman spectroscopy investigations of l(+)-ascorbic acid and its mono- and di-deprotonated anions (AH? and A2?) are reviewed and new measurements reported with several wavelengths, 229, 244, 266, 488, and 532 nm. Results are interpreted, assisted by new DFT/B3LYP quantum chemical calculations with 6-311++G(d,p) basis sets for several conformations of ascorbic acid and the anions. Raman spectra were measured during titration with NaOH base in an oxygen-poor environment to avoid fluorescence when solutions were alkaline. The ultraviolet (UV) absorption band for ascorbic acid in aqueous solution at ~247 nm was found to cause strong resonance enhancement for the ring C?C stretching mode (called B) at ~1692 cm?1. The ascorbate mono-anion absorbs at ~264.8 nm giving Raman resonance enhancement for the same ring C–C bond stretching, downshifted to ~1591 cm?1. Finally, for the ascorbate di-anion, absorption was found at ~298.4 nm with molar absorptivity of ~7,000 L mol?1 cm?1 and below ~220 nm. With UV light (244 and 266 nm), strongly basic solutions gave pronounced Raman resonance enhancement at ~1556 cm?1. Relatively weak preresonance enhancement was seen for A2? when excitation was done with 229 nm UV light, allowing water bands to become observable as for normal visible light Raman spectra.  相似文献   

11.
V. K. Ceylan 《光谱学快报》2013,46(8):1555-1561
Abstract

The electronic (800–400 nm), infrared (4000–200,400–20 cm?1), ordinary Raman (400–200 cm?1) spectra of morpholinium and the pyridium hexahalo-di(aquo) dimolybdate(II) complexes, containing quadruple metal-metal bonds were investigated. The electronic spectra of the solid compounds at various temperatures (25,100 and 300K) demonstrate intense and structured bands in the visible region (510–582 nm) attributed to the expected δ→δ? transitions.

From the infrared and Raman spectra, the skeletal stretching modes in these complexes have been localized, and the charectenstic bands of these ions were observed in the expected regions.

Finally, the ionic interections were relatively weak, but the existance of phenomena was perceptible and the result was obtained in agreement with X-ray data.  相似文献   

12.
Abstract

Two vibrational spectrometry–based methodologies were developed for procymidone determination in wettable powdered pesticide formulations. The Fourier‐transform infrared (FTIR) procedure was based on the selective extraction of procymidone by chloroform and determination by peak area measurement between 1451 and 1441 cm?1, using a baseline correction established between 1490 and 1410 cm?1, and a precision of 0.4% and a limit of detection of 0.01% w/w procymidone for a sample mass of 25 mg were obtained. For FT‐Raman determination, the selected conditions were peak area measurement between 1005 and 995 cm?1 Raman shift, with a baseline correction fixed between 1030 and 947 cm?1, and a relative standard deviation of 1% and a limit of detection of 0.8% procymidone in the original sample were obtained. The sample frequency for FTIR determination was 30 hr?1, lower than that for Raman with 40 hr?1. FT‐Raman reduces to the minimum the reagent consumption and waste generation, also avoiding the sample handling and contact of the operator with the pesticide. It can be concluded that the proposed methods are appropriate for quality control in commercial pesticide formulations.  相似文献   

13.
《光谱学快报》2013,46(5-6):515-529
A simple method has been developed for the determination of Chlorsulfuron in pesticide formulations by Fourier Transform Infrared (FTIR). Samples were diluted with CHCl3? , and the FTIR spectra of the samples and standards were obtained at a nominal resolution of 4 cm? 1 from 4000 to 900 cm? 1 with the accumulation of 25 scans. Chlorsulfuron determination was based on the measurement of peak area values from 1373 to 1363 cm? 1 which were corrected by use of a two points baseline defined from 1401 to 1302 cm? 1. The limit of detection achieved, which was of the order of 6 µg g? 1, was appropriate for the determination of Chlorsulfuron in commercially available formulations. FTIR results were statistically comparable with those found by High Performance Liquid Chromatography (HPLC). The procedure reduces organic solvent consumption per sample to less than 3 ml CHCl3, reduces waste generation and increases the sample measurement frequency up to 60 h? 1.  相似文献   

14.
Gel polymer electrolyte based on poly(vinyl acetate) and poly(vinylidene fluoride) was prepared by solvent casting technique, in which the addition of plasticizers improves the conductivity of polymer membranes. The blend polymer electrolyte containing propylene carbonate (PC) exhibits the highest conductivity of 0.922?×?10?2 S cm?1 at room temperature because of the higher dielectric constant as compared to other plasticizers used in the present study. Material characterizations were done with the help of SEM and FT-IR techniques. The activation energy values were computed from ‘log σ?1/T’ Arrhenius plots.  相似文献   

15.
Fourier transform infrared (FT-IR) investigation of Oltu-stone (natural carbon black) and jet revealed several differences between these carbonaceous materials. The band peaking at about 1000 cm?1 is the first important difference: while the band in the jet spectra appears as one sharp peak at about 1001 cm?1, the similar band in the Oltu-stone spectra is shifted to about 1026 cm?1 with a broad shoulder toward high frequency. Even though the assignment of the shifted band is at present controversial, it may be attributed to carbon-oxygen stretching mode. Second, the doublet bands at about 2912 and 2843 cm?1 are much more intense in the jet spectra then in the Oltu-stone spectra. They are confidently attributed to aliphatic C-H stretching mode. Finally, the broad water band on setting at about 3750 cm?1 is maturated in Oltu-stone, and it is much more evident than in that of jet.

Therefore, FT-IR appears as a favorable identification method for these kinds of carbonaceous materials.  相似文献   

16.
Abstract

Infrared and Raman spectra (4000-200 cm?1) were recorded for 4-vinylpyridine and vibrational assignments made for fundamental modes on the basis of frequency shifts of the coordinated ligand, of the group vibrational concept and comparison with the assignments for related molecules. the infrared spectra of M(4-vinylpyridine)2Ni(CN)4 (M=Mn, Cd, Fe, Co, Ni or Cu) are reported.  相似文献   

17.
Abstract

The FTIR and FT Raman spectra of benzylidene aniline, and o-hydroxybenzylidene o-hydroxyaniline compounds in the solid state in the wavenumber (1800-200 cm?1) are recorded. An assignment for nearly all fundamentals are proposed. Comparison of the spectra of trans stilbene and benzylidene aniline reveals that v N-Ph stretch for the latter compound is situated at 1368 cm?1 in the IR spectra with medium intensity. for o-hydroxybenzylidene o-hydroxyaniline, the stretching modes v N-Ph, and v C-Ph are observed at 1356 and 1226 cm?1 respectively. the two v O-Ph are observed as intense bands in the IR spectra at 1245 and 1278 cm?1, respectively. the FTIR spectra of the o-hydroxybenzylidene o-hydroxyaniline complexes with Cu(II) and Ni(II) metal ions are also recorded and assigned.  相似文献   

18.
ABSTRACT

Papagoite is a silicate mineral named after an American Indian tribe and was used as a healing mineral. Papagoite CaCuAlSi2O6(OH)3 is a hydroxy mixed anion compound with both silicate and hydroxyl anions in the formula. The structural characterization of the mineral papagoite remains incomplete. Papagoite is a four-membered ring silicate with Cu2+ in square planar coordination.

The intense sharp Raman band at 1053 cm?1 is assigned to the ν1 (A 1g) symmetric stretching vibration of the SiO4 units. The splitting of the ν3 vibrational mode offers support to the concept that the SiO4 tetrahedron in papagoite is strongly distorted. A very intense Raman band observed at 630 cm?1 with a shoulder at 644 cm?1 is assigned to the ν4 vibrational modes.

Intense Raman bands at 419 and 460 cm?1 are attributed to the ν2 bending modes.

Intense Raman bands at 3545 and 3573 cm?1 are assigned to the stretching vibrations of the OH units. Low-intensity Raman bands at 3368 and 3453 cm?1 are assigned to water stretching modes. It is suggested that the formula of papagoite is more likely to be CaCuAlSi2O6(OH)3 · xH2O. Hence, vibrational spectroscopy has been used to characterize the molecular structure of papagoite.  相似文献   

19.
The influences on the thermal degradation and crystallization behaviors of poly(p-dioxanone) (PPDO) were initially investigated by adding bis-(2,6-diisopropylphenyl) carbodiimide (labeled as St). It was found that the addition of St could significantly enhance the thermal stability and crystallizability of PPDO. The thermal decomposition temperature of PPDO increased with the increase of the amount of St added. The thermal decomposition activation energies of PPDO increased from 94.2 to 130.8 kJ mol?1 in the case of 5 wt% St. The addition of St did not change the crystal structure of PPDO, while it increased the number of nucleation sites and improved the crystallizability of PPDO. The crystallization activation energies, calculated by the Kissinger method, for PPDO and PPDO/5 wt% St were ?111.4 and ?141.5 kJ mol?1, respectively, confirming the crystallizability of PPDO was enhanced after the addition of St.  相似文献   

20.
Polycarbonate (Makrofol‐N) thin films were irradiated with protons (3 MeV) under vacuum at room temperature with the fluence ranging from 1×1014 to 1×1015 protons cm?2. The change in surface morphology, optical properties, degradation of the functional groups, and crystallinity of the proton‐irradiated polymers were investigated with atomic force microscopy (AFM), UV‐VIS, and Fourier‐transform infrared (FTIR) spectroscopy, and X‐ray diffraction (XRD) techniques, respectively. AFM shows that the root mean square (RMS) roughness of the irradiated polycarbonate surface increases with the increment of ion fluence. The UV‐VIS analysis revealed that in Makrofol‐N the optical band gap decreased by 30% at highest fluence of 1×1015 protons cm?2. The band gap can be correlated to the number of carbon atoms, M, in a cluster with a modified Robertson's equation. The cluster size in the proton‐irradiated Makrofol‐N increased from 112 to 129 atoms with the increase of fluence from 1×1014 to 1×1015 protons cm?2. FTIR spectra of proton (3 MeV) irradiated Makrofol‐N showed a strong decrease of almost all absorption bands at about 1× 1014 protons cm?2. However, beyond a higher critical dose an increase in intensity of almost all characteristic bands was noticed. The appearance of a new peak at 3,500 cm?1 (‐OH groups) was observed at the higher fluences in the FTIR spectra of proton‐irradiated polycarbonate. XRD measurements showed an increase of full width at half maximum (FWHM) and the average intermolecular spacing of the main peak, which may be due to the increase of chain scission and the introduction of ‐OH groups in the proton irradiated polycarbonate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号