首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evaluation by empirically derived equations for the substituent effect (α,β,γ,δ) on the 13C NMR chemical shifts for C-1, C-2, C-3 and C-4 in β-aryl-β-methoxyvinylhalomethylketones 1a-g to 2a-g [R3C(O)-CH=C(Ar)-OMe, where R3 = CCl3, CF3 and Ar = p-YC6H4 (Y = H, Me, MeO, F, Cl, Br, NO2)], taking as reference the β-ethoxyvinyltrichloromethylketone (3), is reported. From the calculated values for the α,β,γ,δ effects for each substituent it was possible to estimate the chemical shift of each carbon of the compounds 1,2. The 13C chemical shifts of the C-1, C-2, C-3, C-4 of these compounds, can be estimated with good to rasoable precision: 84% of the calculated chemical shifts are found to be within ±1.0ppm, and 100% are found to be within ±1.5ppm. The Y-Effects on C-3 and C-4 are compared with carbon charge densities (qr).  相似文献   

2.
Abstract

Evaluation by empirically derived equations for the Substituent effect (α, β, γ, δ) on the 13C NMR chemical shifts for C-2, C-3, C-4, C-5, C-6, the halomethyl-substituted carbon (C-7) and the cyano or oxymic carbon (C-8) in 2-halomethyl-2-hydroxy-tetrahydrofurans 1a-c, 2, 3a, b, 4a and -5,6-tetrahydro-4H-pyrans 5a-c, 6a [with C-2-substituents (R2): CF3, CCl3 or CHCl2, C-3-substituents (R3): CN, C(Me)=NOH, CH=NOMe, C(Me)=NOMe or CH=NOH], taking as reference the 2-trifluoromethyl-2-hydroxy-tetrahydrofuran (la), is reported. From the additivity properties of the α-, β-, γ-, δ-and ?-effects for each Substituent it is possible to predict the chemical shift of each carbon of the compounds 1–6.

  相似文献   

3.
Carbon-13 NMR chemical shifts of a series of (E)- and (Z)-N-ethyl-N-methylamides [RC(O)NEtMe, R=H, Me, Et, i-Pr, t-Bu, CF3, ClCH2, Cl2CH, Cl3C, BrCH2, Br2CH, Br3C and ICH2] are reported. The α-carbon and carbonyl carbon chemical shifts are correlated with the empirical α-substituent effect and Charton's electrical parameter ([sgrave]I), respectively. The N-alkyl carbon resonances were attributed mainly to the γ- and δ-effects of R.  相似文献   

4.
The 13C nuclear magnetic resonance (NMR) chemical shifts δc of bridge group carbons (C‐β, C‐α, and C═N) were measured in this work for a wide set of substituted cinnamyl anilines p‐XC6H4CH═CHCH═NC6H4Y‐p (X = NO2, Cl, H, Me, MeO, or NMe2; Y = NO2, CN, CO2Et, Cl, F, H, Me, MeO, or NMe2) and were used to study the substituent effect. In the study on 13C NMR chemical shifts of the titled compounds with single substituent changed, for every bridge carbon δc, the effect of cinnamyl substituent X is opposite to that of aniline substituent Y. That is, the action of the same substituent on different aromatic rings is different from the 13C NMR chemical shifts, and for C‐β, C‐α, and C═N, the choice of correlation equation depends on the ratio ρF(Y)/ρR(Y). When the ratio ρF(Y)/ρR(Y) is close to 1, the chemical shifts of bridge carbons can be well correlated with the single‐parameter equation; otherwise, it is better to adopt the dual‐parameter equation for correlation, and the further the values of ρF(Y)/ρR(Y) stray from 1, the more suitable the corresponding δc values are to be correlated with the dual‐parameter equation. In the study on δc of model compounds with simultaneous variations of substituents X and Y, for δc(C═N), a multi‐parameter correlation equation is obtained, and the substituent cross‐interaction item Δσ2 is suitable to scale the interaction between substituents; however, for δc(C‐α and C‐β), the substituent cross‐interaction item Δσ2 is perhaps too small to be observed. The multi‐parameter correlation equations can be recommended to predict well the corresponding δc values of disubstituted cinnamyl anilines. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
The synthesis of 14 novel N-propargylic β-enaminones from the reaction of β-alkoxy vinyltrihalomethyl[carboxyethyl] ketones [R3C(O)CHC(R1)OMe, where R3 = CF3, CCl3, CO2Et and R1 = Me, Et, Pr, Bu, i-Pent, CH2CH2CO2Me] with propargyl amines [R2NHCH2CCH, where R2 = Pr, PhCH2] is reported. Yields, solvents and reaction times needed for reaction completion, by microwave irradiation (MW), conventional thermal heating (TH) and under ultrasound irradiation (US) are compared. The best results were obtained under US irradiation in good to excellent yields (70-93%).  相似文献   

6.
Evaluation by empirically derived equations for the Substituent effect (α, β, γ, δ) on the 13C NMR chemical shifts for C-3, C-4. C-5 and halomethyl-substituent carbon (C-6) in isoxazoles 1-5 [where C-3 substituent (R1) = H, alkyl or phenyl, C-4 Substituent (R2) = H, alkyl, and C-5 substituent (R3) = di-or trihalomethyl, methyl and H], taking as reference the compound la, is reported. From the calculated values for the α, β, γ, δ effects for each substituent it was possible to estimate the chemical shift of each carbon of the compounds 1–5. The 13 C chemical shifts of the C-3, C-4, C-5, C-6 of these compounds, can be estimated with good precision: 94% of the calculated chemical shifts are found to be within ±1.0ppm, and 100% are found to be within ±1.5ppm.  相似文献   

7.
The behaviour of Schiff bases of 3‐hydroxy‐4‐pyridincarboxaldehyde and 4‐R‐anilines (R?H, CH3, OCH3, Br, Cl, NO2) in acid media has been described. 1H, 13C, 15N‐NMR chemical shifts allow to establish the protonation site and its influence on the hydroxyimino/oxoenamino tautomerism. DFT calculations, electronic spectra and X‐ray diffraction are in agreement with the NMR conclusions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
An earlier study fit calculated dynamic 13C‐NMR spectra in trifluoroacetic acid (TFA) (with added sulfuric acid) to slow exchange between N‐protonated and O‐protonated tautomers of 1‐azabicyclo[3.3.1]nonan‐2‐one. The present study reports simultaneous observation of both carbonyl 13C peaks in 40% sulfuric acid/60% TFA at ?40 °C. This furnishes the only example in which experimental carbonyl 13C chemical shifts may be compared with a neutral lactam (in TFA or CDCl3) with its N‐protonated and O‐protonated derivatives. The seemingly anomalous upfield chemical shifts (experimental and computational) of the 13C carbonyl peaks in this N‐protonated lactam (and other twisted N‐protonated lactams) relative to the free bases are compared with data for unstrained protonated lactams and amides. The results are rationalized through conventional resonance structures. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The structures of 2‐substituted malonamides, YCH(CONR1R2)CONR3R4 (Y = Br, SO2Me, CONH2, COMe, and NO2) were investigated. When Y = Br, R1R2 = R3R4 = HEt; Y = SO2Me, R1–R4 = H and for Y = CONH2 or CONHPh, R1–R4 = Me, the structure in solution is that of the amide tautomer. X‐ray crystallography shows solid‐state amide structures for Y = SO2Me or CONH2, R1–R4 = H. Nitromalonamide displays an enol structure in the solid state with a strong hydrogen bond (OO distance = 2.3730 Å at 100 K) and d(OH) ≠ d(OH). An apparently symmetric enol was observed in solution, even in appreciable percentages in highly polar solvents such as DMSO‐d6, but Kenol values decrease on increasing the solvent polarity. The N,N′‐dimethyl derivative is less enolic. Acetylmalonamides display a mixture of enol on the acetyl group and amide in non‐polar solvents, and only the amide in DMSO‐d6. DFT calculations gave the following order of pKenol values for Y: H > CONH2 > COMe ≥ COMe (on acetyl) ≥ MeSO2 > CN > NO2 in the gas phase, CHCl3, and DMSO. The enol on the C?O group is preferred to the aci‐nitro compound, and the N? O? HO?C is less favored than the C?O? HO?C hydrogen bond. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
13C-NMR spectra of several 9-acridanones with different substituents both on the ring (R1 = CH3, OCH3, NH2, N(CH3)2, NO2) and at the nitrogen atom (R2 = H, CH3 C2H5, CH2-C6H5, C[tbnd]C-CH3, (CH2)2N(C2H2)2, CH=C=CH2) have been recorded. The C-NMR chemical shifts are discussed as a function of the nature of the substituent, the importance of peri steric interactions and the electronic structure of the acridanone ring. There is a good linear relationship between the total electronic density and the chemical shifts.  相似文献   

11.
《光谱学快报》2013,46(6):729-736
A quantitative relationship between the 17O substituent chemical shifts (SCS) of γ-alkyl substituents and the torsion angles calculated by the AM1 method is reported. A series of 3-alkyl substituted 5-trichloromethyl-5-hydroxy-4,5-dihydroisoxazoles and 5-trichloromethyl isoxazoles [where 3-alkyl substituents are Me, Et, n-Pr, iso-Bu, BrCH2, iso-Pr, Br2CH and tert-Bu] as model compounds were used.

  相似文献   

12.
Geometric optimization and gauge including atomic orbital (GIAO). 1H and 13C NMR chemical shift calculations with Hartree–Fock (HF) method and density functional method (B3LYP), using the 6‐31G(d) and 6‐31+G(d) basis sets, are proposed as a tool to be applied in the structural characterization of ethene‐1,1,2,2‐tetrayltetramethylene tetrathiocyanate, thus providing useful support in the interpretation of experimental NMR data. Parameters related to linear correlation plot of computed versus experimental 13C NMR chemical shifts in DMSO‐d6 are provided.  相似文献   

13.
Histidine usually exists in three different forms (including biprotonated species, neutral τ and π tautomers) at physiological pH in biological systems. The different protonation and tautomerization states of histidine can be characteristically determined by 13C and 15N chemical shifts of imidazole ring. In this work, solid-state NMR techniques were developed for spectral editing of 13C and 15N sites in histidine imidazole ring, which provides a benchmark to distinguish the existing forms of histidine. The selections of 13Cγ, 13Cδ2, 15Nδ1, and 15Nε2 sites were successfully achieved based on one-bond homo- and hetero-nuclear dipole interactions. Moreover, it was demonstrated that 1H, 13C, and 15 chemical shifts were roughly linearly correlated with the corresponding atomic charge in histidine imidazole ring by theoretical calculations. Accordingly, the 1H, 13C and 15N chemical shifts variation in different protonation and tautomerization states could be ascribed to the atomic charge change due to proton transfer in biological process.  相似文献   

14.
In the present study, structural properties of Mono-(2-Pyridyl) Hydrazone were studied extensively utilizing density functional theory (DFT) employing B3LYP exchange correlation. The Fourier transform infrared (solid phase) was recorded. The vibrational frequencies in the ground state were calculated by using density functional method (B3LYP) with 6-31G* and 6-311G** as basis sets. The spectral studies revealed that the title compound exists in Keto form. Spectral techniques that we employed include 1H and 13C NMR, electronic, thermal techniques. Correlation between experimental chemical shifts and GIAO/B3LYP/6-311G**-calculated isotropic shielding constants, δexp = a + bσcalc, are reported. Good linear regressions between experimental and theoretical results for 1H and 13C were obtained.  相似文献   

15.
Some 13C chemical shifts of the CHn groups in the aliphatic side chains of Im-cyt c have been determined for the first time based on the H chemical shifts of their attached protons with the aid of heteronuclear multiple-quantum coherence (HMQC) spectroscopy. Comparison of chemical shifts of these specifically assigned 13C and H resonances from Im-cyt c with those from cyt c indicates that 13C-NMR spectra may provide an opportunity to probe the electronic structure and conformational changes induced by axial ligand substitution.  相似文献   

16.
Proton coupled and uncoupled 13C, 1H, DEPT, COSY and HETCOR NMR spectra of 4-Phenylpyridine (4-Phpy) have been reported for the first time except for its 1H NMR spectrum. In order to provide a precise structural elucidation for carbon atoms those have very close chemical shifts to each other, the magnitude of nJCH (n=1,2,3) coupling constants of 4-Phpy (C11H9N) have also been investigated. 13C, 1H NMR chemical shifts and 1-3JCH coupling constants of 4-Phpy have been calculated by means of B3LYP density functional method with 6-311++G(d,p) basis set. Moreover, the optimized parameters (bond lengths, bond and torsion angles) of 4-Phpy have been calculated with B3LYP at 6-31G(d) level in methanol (ε=32.63). Comparison between the experimental and the theoretical results indicates that density functional B3LYP method is able to provide satisfactory results for predicting NMR properties.  相似文献   

17.
Oxindole alkaloids, isolated from the bark of Uncaria tomentosa [Willd. ex Schult.] Rubiaceae, are considered to be responsible for the biological activity of this herb. Five pentacyclic and two tetracyclic alkaloids were studied by solid-state NMR and theoretical GIAO DFT methods. The 13C and 15N CPMAS NMR spectra were recorded for mitraphylline, isomitraphylline, pteropodine (uncarine C), isopteropodine (uncarine E), speciophylline (uncarine D), rhynchophylline and isorhynchophylline. Theoretical GIAO DFT calculations of shielding constants provide arguments for identification of asymmetric centers and proper assignment of NMR spectra. These alkaloids are 7R/7S and 20R/20S stereoisomeric pairs. Based on the 13C CP MAS chemical shifts the 7S alkaloids (δ C3 70–71 ppm) can be easily and conveniently distinguished from 7R (δC3 74.5–74.9 ppm), also 20R (δC20 41.3–41.7 ppm) from the 20S (δC20 36.3–38.3 ppm). The epiallo-type isomer (3R, 20S) of speciophylline is characterized by a larger 15N MAS chemical shift of N4 (64.6 ppm) than the allo-type (3S, 20S) of isopteropodine (δN4 53.3 ppm). 15N MAS chemical shifts of N1–H in pentacyclic alkaloids are within 131.9–140.4 ppm.  相似文献   

18.
13C NMR chemical shift assignments were obtained for the Diels-Alder adduct of phencyclone with norbornadiene in CD2Cl2 and in CDCl3 solution. The 13C spectrum at 50.3 MHz, as well as the 1H spectrum at 200.1 MHz, show evidence for hindered rotation of the two unsubstituted bridgehead phenyl rings of the adduct at ambient temperatures. In CD2Cl2 solution, all 19 of the unique 13C nuclei of this molecule give rise to individual 13C resonances. The 1H assignments which were made earlier, together with one-bond and long-range 2D heteronuclear correlation experiments, allowed the assignment of all 13C chemical shifts in the molecule.  相似文献   

19.
1H and 13C NMR chemical shifts were measured for a set of six isomers—the cis and trans 2‐, 3‐, and 4‐methylcyclohexanols. 1H and 13C NMR chemical shifts were computed at the B3LYP, WP04, WC04, and PBE1 density functional levels for the same compounds, taking into account the Boltzmann distribution among conformational isomers (chair–chair forms and hydroxyl rotamers). The experimental versus computed chemical shift values for proton and carbon were compared and evaluated (using linear correlation (r2), total absolute error (|Δδ|T), and mean unsigned error (MUE) criteria) with respect to the relative ability of each method to distinguish between cis and trans stereoisomers for each of the three constitutional isomers. For 13C shift data, results from the B3LYP and PBE1 density functionals were not sufficiently accurate to distinguish all three pairs of stereoisomers, while results using the WC04 functional did do so. For 1H shift data, each of the WP04, B3LYP, and PBE1 methods was sufficiently accurate to make the proper stereochemical distinction for each of the three pairs. Applying a linear correction to the computed data improved both the absolute accuracy and the degree of discrimination for most of the methods. The nature of the cavity definition used for continuum solvation had little effect. Overall, use of proton chemical shift data was more discriminating than use of carbon data. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
1H and 13C NMR chemical shift assignments were obtained for the local anesthetics etidocaine (1) and etidocaine hydrochloride (2) in CDCl3 solution, as well as for 2 in D2O solution. The COSY experiment was employed for proton-proton correlation, while onebond and long-range 2D heteronuclear techniques allowed the assignments of all 13C chemical shifts in each molecule. Etidocaine has a chiral carbon; etidocaine hydrochloride has, in addition to the natural chiral center, an acid-induced chirality at the protonated amine nitrogen, resulting in solvent-dependent diastereomers. Ten of the fourteen magnetically nonequivalent 13C nuclei of 2 exhibit doubled 13C resonance peaks (50.3 MHz, 20°C, CDCl3 solution) due to the presence of the two diastereomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号