首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A new method to achieve 2-μm pulsed fiber lasers based on a supercontinuum(SC) is demonstrated. The incident pump light is a pulsed SC which contains a pump light and a signal light at the same time. The initial signal of the seed laser is provided by the incident pump light and amplified in the cavity. Based on this, we obtain a 2-μm pulsed laser with pulse repetition rate of 50 kHz and pulse width of 2 ns from the Tm-doped fiber laser. This 2-μm pulsed laser is amplified by two stages of fiber amplifiers, then the amplified laser is used for mid-infrared(mid-IR) SC generation in a 10-m length of ZrF4–BaF2–LaF3–AlF3–NaF(ZBLAN) fiber. An all-fiber-integrated mid-IR SC with spectrum ranging from 1.8 μm to4.3 μm is achieved. The maximal average output power of the mid-IR SC from the ZBLAN fiber is 1.24 W(average output power beyond 2.5 μm is 340 mW), corresponding to an output efficiency of 6.6% with respect to the 790-nm pump power.  相似文献   

2.
莫坤东  翟波  李剑峰  韦晨  刘永 《中国物理 B》2017,26(5):54216-054216
As_2S_3 and As_2Se_3 chalcogenide 3-bridges suspended-core fibers(SCFs) are designed with shifted zero-dispersion wavelengths(ZDWs) at around 1.5 μm, 2 μm, and 2.8 μm, respectively. A generalized nonlinear Schr ¨odinger equation is used to numerically compare supercontinuum(SC) generation in these SCFs pumped at an anomalous dispersion region nearby their ZDWs. Evolutions of the long-wavelength edge(LWE), the power proportion in the long-wavelength region(PPL), and spectral flatness(SF) are calculated and analyzed. Meanwhile, the optimal pump parameters and fiber length are given with LWE, PPL, and SF taken into account. For As_2S_3 SCFs, SC from a 14 mm-long fiber with a ZDW of 2825 nm pumped at 2870 nm can achieve the longest LWE of ~ 13 μm and PPL up to ~72%. For As_2Se_3 SCFs, the LWE of 15.5 μm and the highest PPL of ~ 87% can be achieved in a 10 mm-long fiber with ZDW of 1982 nm pumped at 2000 nm. Although the As_2Se_3 SCFs can achieve much longer LWE than the As_2S_3 SCFs, the core diameter of As_2Se_3 SCFs will be much smaller to obtain a similar ZDW, leading to lower damage threshold and output power. Finally, the optimal parameters for generating SC spanning over different mid-IR windows are given.  相似文献   

3.
We design a novel all-normal flat near-zero dispersion chalcogenide photonic crystal fiber(PCF) for generating midinfrared(MIR) supercontinuum(SC). The proposed PCF with a core made of As_2Se_3 glass and uniform air holes in the cladding is selectively filled with As_2S_5 glass. By carefully engineering the PCF with an all-normal flat near-zero dispersion profile, the anomalous-dispersion soliton effect is reduced, thus enabling broadband highly coherent SC to be generated.We also investigate the influence of the pulse parameters on the SC generation. Broadband SC covering 1.4 μm–10 μm with perfect coherence is achieved by pumping the proposed 3-cm-long PCF with 3-μm 100-fs pulses. The results provide a potential all-fiber realization of the broadband coherent MIR-SC.  相似文献   

4.
We demonstrated a 2-μm passively mode-locked nanosecond fiber laser based on a MoS_2 saturable absorber(SA).Owing to the effect of nonlinear absorption in the MoS_2 SA, the pulse width decreased from 64.7 to 13.8 ns with increasing pump power from 1.10 to 1.45 W. The use of a narrow-bandwidth fiber Bragg grating resulted in a central wavelength and 3-dB spectral bandwidth of 2010.16 and 0.15 nm, respectively. Experimental results show that MoS_2 is a promising material for a 2-μm mode-locked fiber laser.  相似文献   

5.
We demonstrate efficient supercontinuum generation extending into mid-infrared spectral range by pumping a twomode As_2S_3 fiber in the normal dispersion regime. The As_2S_3 fiber is fusion spliced to the pigtail of a near-infrared supercontinuum pump source with ultra-low splicing loss of 0.125 dB, which enables a monolithic all-fiber mid-infrared supercontinuum source. By two-mode excitation and mixed-mode cascaded stimulated Raman scattering, a supercontinuum spanning from 1.8 μm to 4.2 μm is obtained. Over 70% of the supercontinuum power is converted to wavelengths beyond2.4 μm. This is the first experimental report with respect to the multimode mid-infrared supercontinuum generation in a step-index two-mode chalcogenide fiber.  相似文献   

6.
Ultrafast differential scanning calorimetry(DSC) was employed to investigate the glass transition kinetics of As_2S_3 and As_2Se_3 . By using the Arrhenius method, a fragility index of~22 can be estimated in both As_2S_3 and As_2Se_3 .However, when the scanning rate is more than 200 K·s~(-1), non-Arrhenius behavior can be observed in such "strong" liquids where the Vogel–Fulcher method is more accurate to describe the glass transition kinetics. The fragilities of As_2S_3 and As_2Se_3 glasses are thus extrapolated as 28.3±1.94 and 23.7±1.80, respectively. This indicates that, As_2Se_3 glass has a better structural stability and it is a better candidate for device applications.  相似文献   

7.
The mid-infrared(MIR) luminescent properties of Dy~(3+) ions in a new chalcohalide glass host, Ga_2S_3–Sb_2S_3–CsI,are investigated; and the suitability of the doped glass for MIR fiber lasers is evaluated. The Dy~(3+)-doped chalcohalide glasses exhibit good thermal stability and intense MIR emissions around 2.96 μm and 4.41 μm. These emissions show quantum efficiencies(η) as high as ~60%, and have relatively large stimulated emission cross sections(σem). The low phonon energy(~307 cm~(-1)) of the host glass accounts for the intense MIR emissions, as well as the high η. These favorable thermal and emission properties make the Dy~(3+)-doped Ga_2S_3–Sb_2S_3–CsI glasses promising materials for MIR fiber amplifiers or lasers.  相似文献   

8.
We report a continuous-wave Er:ZBLAN fiber laser with the operation wavelength reaching 3.68 μm.The midinfrared Er:ZBLAN fiber laser is pumped with the dual-wavelength sources consisting of a commercial laser diode at 970 nm and a homemade Tm-doped fiber laser at 1973 nm.By increasing the launched pump power at1973 nm,the laser wavelength can be switched from 3.52 to 3.68 μm.The maximum output power of 0.85 W is obtained with a slope efficiency of 25.14% with respect to the 1973 nm pump power.In the experiment,the laser emission at 3.68 μm is obtained with a significant power of 0.62 W,which is the longest emission wavelength in free-running Er:ZBLAN fiber lasers.  相似文献   

9.
We report the fabrication of cascaded photonic crystal fiber (PCF) tapers in monolithic design. Flat broadband supercontinuum (SC) generation in cascaded PCF tapers pumped by sub-nanosecond pulses from a 1 064-nm microchip laser is demonstrated. The spectral width (20 dB) extends from 0.47 to 1.67 μm. In the optimal configuration, an ultraflat (3 dB) spectrum from 500 to 1 000 nm is achieved.  相似文献   

10.
A robust design for a photonic crystal fiber (PCF) based on pure silica with small normal dispersion and high nonlinear coefficient for its dual concentric core structure is presented.This design is suitable for flat broadband supercontinuum (SC) generation in the 1.55-μm region.The numerical results show that the nonlinear coefficient of the proposed eight-ring PCF is 33.8 W -1 ·km -1 at 1550 nm.Ultraflat dispersion with a value between -1.65 and -0.335 ps/(nm·km) is obtained ranging from 1375 to 1625 nm.The 3-dB bandwidth of the SC is 125 nm (1496–1621 nm),with a fiber length of 80 m and a corresponding input peak power of 43.8 W.The amplitude noise is considered to be related to SC generation.For practical fabrication,the influence of the random imperfections of airhole diameters on dispersion and nonlinearity is discussed to verify the robustness of our design.  相似文献   

11.
Based on dense wavelength-division multiplexing technology, frequency transfer and time synchronization are simultaneously realized over a compensated cascaded fiber link of 430 km, which is a part of the Beijing–Shanghai optical fiber backbone network. The entire cascaded system consists of two stages with fiber links of 280 and 150 km, respectively. To keep high symmetry and low noise, specific bi-directional erbium-doped fiber amplifiers are used to compensate the large optical attenuation of each fiber link. When the compensation servo is active in every stage, the cascaded system achieves the stability of 1.94 × 10-13 at 1 s and 1.34 × 10-16at104 s, for frequency transfer. It is also verified that the actual results of the cascaded system are in good agreement with the theoretical ones calculated from error theory. Simultaneously, after calibration of each stage, time synchronization is also realized. The final accuracy of the whole system is within 94 ps.  相似文献   

12.
王河林  吴彬  王肖隆 《中国物理 B》2016,25(6):64207-064207
Based on the designed As_2Se_3 and As_2S_3 chalcogenide glass photonic crystal fiber(PCF) and the scalar nonlinear Schrdinger equation,the effects of pump power and wavelength on modulation instability(MI) gain are comprehensively studied in the abnormal dispersion regime of chalcogenide glass PCF.Owing to high Raman effect and high nonlinearity,ultra-broadband MI gain is obtained in chalcogenide glass PCF.By choosing the appropriate pump parameter,the MI gain bandwidth reaches 2738 nm for the As_2Se_3 glass PCF in the abnormal-dispersion region,while it is 1961 nm for the As_2S_3 glass PCF.  相似文献   

13.
We demonstrated a femtosecond mode-locked Er:Zr F4-Ba F2-La F3-Al F3-Na F(Er:ZBLAN)fiber laser at 2.8μm based on the nonlinear polarization rotation technique.The laser generated an average output power of 317 m W with a repetition rate of 107 MHz and pulse duration as short as 131 fs.To the best of our knowledge,this is the shortest pulse generated directly from a mid-infrared mode-locked Er:ZBLAN fiber laser to date.Numerical simulation and experimental results confirm that reducing the gain fiber length is an effective way to shorten the mode-locked pulse duration in the Er:ZBLAN fiber laser.The work takes an important step towards sub-100-fs mid-infrared pulse generation from mode-locked Er:ZBLAN fiber lasers.  相似文献   

14.
Broadband normal dispersion pumping supercontinuum (SC) generation in silica photonic crystal fiber (PCF) is investigated in this paper. A 1064-nm picosecond fiber laser is used to pump silica PCF for the SC generation. The length of PCF is optimized for the most efficient stimulated Raman scattering process in the picosecond pump pulse region. The first stimulated Raman Stokes peak is located in the anomalous dispersion regime of the PCF and near the zero dispersion wavelength; thus the SC generation process can benefit from both a normal dispersion pumping scheme and an anomalous dispersion pumping scheme. The 51.7-W SC spanning from about 700 nm to beyond 1700 nm is generated with an all-fiber configuration, and the pump-to-SC conversion efficiency is up to 90%. In order to avoid the output fiber end face damage and increase the stability of the system, an improved output solution for the high power SC is proposed in our experiment. This high-efficiency near-infrared SC source is very suitable for applications in which average output power and spectral power density are firstly desirable.  相似文献   

15.
We report supercontinuum (SC) generation in a lead silicate SF57 photonic crystal fiber by using a 1550 nm pump source. The effective nonlinear coefficient of the SF57 fiber is simulated to be 111.5 W-1 ·km-1 at 1550 nm. The fiber also shows ultraflat dispersion from 1700 nm to 2100 nm. Our results reveal that with an increase of the average power of the incident pulse from 10 mW to 90 mW, the SC of the SF57 photonic crystal fiber is generated from 1300 nm to 1900 nm with high stability and without significant change in spectral broadening.  相似文献   

16.
We experimentally demonstrate an all-fiber supercontinuum source that covers the spectral region ranging from visible to mid-infrared. The ultra-broadband supercontinuum is realized by pumping a cascaded photonic crystal fiber and a highly nonlinear fiber with a 1/1.5 μm dual-band pump source. A maximum output power of 9.01 W is achieved using the system,which is the highest power ever achieved from a supercontinuum source spanning from the visible to mid-infrared.  相似文献   

17.
We propose and experimentally demonstrate a multi-wavelength thulium-doped fiber(TDF) laser based on all-fiber Mach–Zehnder interferometer(MZI) at 1.9 mm. Here a segment of 4 m single-mode TDF is pumped by 1568 nm fiber laser for 2 mm band optical gain. The MZI includes two cascaded 3 d B coupler. A segment of 3.5 m long un-pumped polarization-maintaining TDF and polarization controller(PC) are joined in the ring cavity to suppress the mode competition. Multi-wavelength lasers at 1.9 mm with wavelength number from one to four are obtained by adjusting the PC and the stability of output power of multi-wavelength fiber laser is analyzed.  相似文献   

18.
High-power ultrafast fiber lasers operating at the 2 μm wavelength are extremely desirable for material processing, laser surgery, and nonlinear optics. Here we fabricated large-core(LC) double-cladding Tm-doped silica fiber via the sol-gel method. The sol-gel-fabricated Tm-doped silica(SGTS) fiber had a large core diameter of 30 μm with a high refractive index homogeneity(Δn=2 × 10~(-4)). With the newly developed LC SGTS fiber as the gain fiber, high-power mode-locking was realized. By using a semiconductor saturable absorber mirror(SESAM) as a mode locker, the LC SGTS fiber oscillator generated mode-locked pulses with an average output power as high as 1.0 W and a pulse duration of 23.9 ps at the wavelength of 1955.0 nm. Our research results show that the self-developed LC Tm-doped silica fiber via the sol-gel method is a promising gain fiber for generating high-power ultrafast lasers in the 2 μm spectral region.  相似文献   

19.
We report the fabrication and characterization of germanium gallium antimony sulfide(Ge–Ga–Sb–S or 2 S2 G, doped with Tm~(3+)ions) microsphere lasers operating at ~1.9-μm spectral band. Compared to the chalcogenide glasses that are used in previous microsphere lasers, this 2 S2 G glass has a lower transition temperature and a higher characteristic temperature. This implies that 2 S2 G microspheres can be fabricated at lower temperatures and the crystallization problem in the sphere-forming process can be alleviated. We show that hundreds of high-quality microspheres(quality factors higher than 105) of various diameters can be produced simultaneously via a droplet sphere-forming method. Microspheres are coupled with silica fiber tapers for optical characterizations. We demonstrate that Whispering Gallery mode(WGM)patterns in the 1.7–2.0 μm band can be conveniently obtained and that once the pump power exceeds a threshold, single-and multi-mode microsphere lasers can be generated. For a typical microsphere whose diameter is 258.64 μm, we demonstrate its laser threshold is 0.383 mW, the laser wavelength is 1907.38 nm, and the thermal sensitivity of the microsphere laser is29.56 pm/?C.  相似文献   

20.
Rare earth europium(Eu(3+))-doped lithium tetraborate(Eu:Li_2B_4O_7) crystal is grown from its stoichiometric melt by microtube Czochralski pulling technique(μT-Cz) for the first time. The grown crystals are subjected to powder x-ray diffraction(PXRD) analysis which reveals the tetragonal crystal structure of the crystals. UV–vis–NIR spectral analysis is carried out to study the optical characteristics of the grown crystals. The crystal is transparent in the entire visible region, and the lower cutoff is observed to be at 304 nm. The existence of BO_3 and BO_4 bonding structure and the molecular associations are analyzed by Fourier transform infrared(FTIR) spectroscopy. The results of excitation and emission-photoluminescence spectra of europium ion incorporated in lithium tetraborate(LTB) single crystal reveal that the observations of peaks at 258,297, and 318 nm in the excitation spectra and peaks at 579, 591, 597, 613, and 651 nm are observed in the emission spectra.The chromaticity coordinates are calculated from the emission spectra, and the emission intensity of the grown crystal is characterized through a CIE 1931(Commission International d'Eclairage) color chromaticity diagram.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号