首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Infrared and Raman spectra were obtained for 5- methyl-2-hexyne and wereinterpreted with the aid of normal coordinate calculations. The spectra and molecular mechanics calculations show the compound to exist in two spectroscopically distinguishable stable conformations, with the C1 conformer being only a little more stable than the Cs, conformer. Vibrational assignments were made for both conformers.  相似文献   

2.
Vibrational spectra have been published and normal coordinate calculations have been made for 1,2-dichlorobutane.1,2 Those calculations were limited to the three conformers that had all four carbon atoms coplanar. Molecular mechanics calculations have now shown a conformer that was omitted to be the second most abundant conformer. Therefore, normal coordinate calculations have been made for this conformer and molecular mechanics calculations have been made for all possible conformers.  相似文献   

3.
Abstract

Infrared spectra were obtained for 1,2-dibromopropane-d6 in the liquid and in the unannealed and annealed solid states. Vibrational assignments were made for the three conformers of 1,2-dibromopropane and the three conformers of 1,2-dibromopropane-d6 with the aid of normal coordinate calculations. All three possible conformers of CD2BrCDBrCD3 were found to be present in the liquid and unannealed solid, but the PHSHH conformer was absent in the annealed solid.  相似文献   

4.
Rotational isoraerism has been shown by vibrational spectroscopy to exist in l-chloro-3-methylbutane,1 l-chromo-3-methylbutane,2 2-chloro-4-methylpentane,3,4 2-bromo-4-methylpentane,4 1,3-dichlorobutane,5 and 1,3-dibromobutane.5 In some cases, definite conclusions were drawn concerning the number and identification of the conformers present. In other cases, it was not possible to determine with certainty which conformers exist. Molecular mechanics calculations have now been made for these six compounds in order to obtain additional information about their conformational behavior, including energies and structures of the possible conformers. The calculations were done with the MM2 program written by Allinger and Yuh and converted by Petillo to run on a microcomputer.6  相似文献   

5.
The rotational spectra of diethyl methylphosphonate (DEMP), diethyl ethylphosphonate (DEEP), and diisopropyl methylphosphonate (DIMP) in supersonic expansions have been acquired using Fourier-transform microwave spectroscopy. Spectroscopic constants have been determined for five distinct conformers of the three molecules. Experimental data have been compared to ab initio calculations performed for each species. For both DEMP and DEEP, the calculations indicate the presence of several low-energy conformers (i.e., ?∼400 cm−1 above the ground state) may be present at room temperature (300 K) for both DEMP and DEEP. When entrained in a supersonic expansion, the rotational temperatures of the samples are much colder (∼2 K); nonetheless, spectra from three conformers of DEEP are still observed experimentally, whereas only one conformer of DEMP is observed. In contrast, only a single low-energy conformer of DIMP is predicted by theory, and is present in the molecular beam. The relative abundance of low-energy conformers of DEMP and DEEP is attributed to the flexibility of the ethoxy groups within each molecule. The presence of multiple DEEP conformers in the supersonic beam indicates a more complex potential energy surface for this molecule that is directly related to conformational shifts of the PCH2CH3 group. Conversely, the absence of low-energy conformers of DIMP is attributed to steric hindrance between isopropoxy groups in the molecule. The internal rotation barrier for the PCH3 group in DEMP and DIMP is compared to that found in DMMP and several phosphonate-based chemical weapon agents.  相似文献   

6.
G. A. Crowder 《光谱学快报》2013,46(9):1151-1160
Molecular mechanics calculations were made for 1,1-dichlorobutane, 2,2-dichlorobutane, and 1,2-dichloro-2-methylpropane in order to compare the results with conclusions obtained from vibrational spectra concerning the conformational behavior of these compounds. Calculations were also made for 1,2-dichloro-2-methylbutane, although vibrational spectra are not available for this compound. The structures and relative energies of the most abundant conformers are given.  相似文献   

7.
Infrared spectra of 1,2‐bis(trifluorosilyl)ethane (SiF3CH2CH2SiF3) were obtained in the vapour and liquid phases, in argon matrices and in the solid phase. Raman spectra of the compound as a liquid were recorded at various temperatures between 293 and 270 K and spectra of an apparently crystalline solid were observed. The spectra revealed the existence of two conformers (anti and gauche) in the vapour, liquid and in the matrix. When the vapour was chock‐frozen on a cold finger at 78 K and annealed to 150 K, certain weak Raman bands vanished in the crystal. The vibrational spectra of the crystal demonstrated mutual exclusion between IR and Raman bands in accordance with C2h symmetry. Intensity variations between 293 and 270 K of pairs of various Raman bands gave ΔH(gauche—anti) = 5.6 ± 0.5 kJ mol−1 in the liquid, suggesting 85% anti and 15% gauche in equilibrium at room temperature. Annealing experiments indicate that the anti conformer also has a lower energy in the argon matrices, is the low‐energy conformer in the liquid and is also present in the crystal. The spectra of both conformers have been interpreted, and 34 anti and 17 gauche bands were tentatively identified. Ab initio and density functional theory (DFT) calculations were performed giving optimized geometries, infrared and Raman intensities and anharmonic vibrational frequencies for both conformers. The conformational energy difference derived in CBS‐QB3 and in G3 calculations was 5 kJ mol−1. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Infrared and Raman spectra were obtained for 2,3-dimethyl-1-butene. The spectra showed the presence of two stable conformations. Vibrational assignments were made for both conformers with the aid of normal coordinate calculations. Values for the force constants that were obtained will be used in the future as the initial values for other substituted 1-alkenes, such as 2-isopropyl-3-methyl-1-butene.  相似文献   

9.
Raman spectra of 1,3‐disilabutane (SiH3CH2SiH2CH3) as a liquid were recorded at 293 K and as a solid at 78 K. In the Raman cryostat at 78 K an amorphous phase was first formed, giving a spectrum similar to that of the liquid. After annealing to 120 K, the sample crystallized and large changes occurred in the spectra since more than 20 bands present in the amorphous solid phase vanished. These spectral changes made it possible to assign Raman bands to the anti or gauche conformers with confidence. Additional Raman spectra were recorded of the liquid at 14 temperatures between 293 and 137 K. Some Raman bands changed their peak heights with temperature but were countered by changes in linewidths, and from three band pairs assigned to the anti and gauche conformers, the conformational enthalpy difference ΔconfH(gaucheanti) was found to be 0 ± 0.3 kJ mol−1 in the liquid. Infrared spectra were obtained in the vapor and in the liquid phases at ambient temperature and in the solid phases at 78 K in the range 4000–400 cm−1. The sample crystallized immediately when deposited on the CsI window at 78 K, and many bands present in the vapor and liquid disappeared. Additional infrared spectra in argon matrixes at 5 K were recorded before and after annealing to temperatures 20–34 K. Quantum chemical calculations were carried out at the HF, MP2 and B3LYP levels with a variety of basis sets. The HF and DFT calculations suggested the anti conformer as the more stable one by ca 1 kJ mol−1, while the MP2 results favored gauche by up to 0.4 kJ mol−1. The Complete Basis Set method CBS‐QB3 gave an energy difference of 0.1 kJ mol−1, with anti as the more stable one. Scaled force fields from B3LYP/cc‐pVQZ calculations gave vibrational wavenumbers and band intensities for the two conformers. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
As a probe of local structure, the vibrational properties of the 1‐butyl‐3‐methylimidazolium tetrafluoroborate [bmim][BF4] ionic liquid were studied by infrared (IR), Raman spectroscopy, and ab initio calculations. The coexistence of at least four [bmim]+ conformers (GG, GA, TA, and AA) at room temperature was established through unique spectral responses. The Raman modes characteristic of the two most stable [bmim]+ conformers, GA and AA, according to the ab initio calculations, increase in intensity with decreasing temperature. To assess the total spectral behavior of the ionic liquid both the contributions of different [bmim]+ conformers and the [bmim]+− [BF4] interactions to the vibrational spectra are discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
The molecular structure and conformational properties of ethyl trifluoroacetate, CF3CO2CH2CH3, were determined in the gas phase by electron diffraction, and vibrational spectroscopy (IR and Raman). The experimental investigations were supplemented by ab initio (MP2) and DFT quantum chemical calculations at different levels of theory. Experimental and theoretical methods result in two structures with Cs (anti–anti) and C1 (anti–gauche) symmetries, the former being slightly more stable than the latter. The electron‐diffraction data are best fitted with a mixture of 56% anti–gauche and 44% anti–anti conformers. The conformational preference was also studied using the total energy scheme, and the natural bond orbital scheme. Also, the infrared spectra of CF3CO2CH2CH3 are reported for the gas, liquid and solid states, as is the Raman spectrum of the liquid. The comparison of experimental averaged IR spectra of Cs and C1 conformers provides evidence for the predicted conformations in the IR spectra. Harmonic vibrational wavenumbers and scaled force fields have been calculated for both conformers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Jia-Jia Xu  Hui-Ji Li 《Molecular physics》2014,112(12):1710-1723
In this work, the ionic solvation and association behaviours in the LiCl aqueous solution were investigated using density functional theory (DFT), a polarised continuum model and classical molecular dynamics simulations. DFT calculations of LiCl(H2O)1–6,8 clusters show that contact ion pair (CIP) and solvent-shared ion pair (SSIP) conformers of LiCl(H2O)n (n ≥ 4) clusters are generally energetic both in the gas phase and in the aqueous solution. Some SSIP conformers may be slightly more stable than their CIP isomers when at least eight water molecules are incorporated in the inner hydration shells of LiCl hydrates. The transformation between CIP and SSIP conformers is easy by overcoming a small energy barrier, which mainly results from the hydration shell reorganisation of Li+. Molecular dynamics simulations show that ion pairs or ion clusters can be found in the LiCl aqueous solution, and the probability of CIP conformers or ion clusters presented in the LiCl solution generally increases with rise in temperature. However, the presentation of ion pairs or ion clusters in the LiCl aqueous solution does not inevitably lead to the nucleation of LiCl crystallisation.  相似文献   

13.
Infrared and Raman spectra were obtained for 3,3-dimethylheptane and were interpreted with the aid of normal coordinate calculations. The presence of only three conformers could be verified in this way. Molecular mechanics calculations showed the probable presence of all eleven possible conformers, with concentrations ranging from 27% to 33%. Structural parameters and the heat of formation were obtained from the calculations.  相似文献   

14.
An experimental study has been performed shedding light on the conformational energies of the asymmetric ether n-butyl ethyl ether. Rotational spectroscopy between 7.8 GHz and 16.2 GHz has identified two conformers of n-butyl ethyl ether, C4H9OC2H5. In these experiments spectra were observed as the target compound participated in an argon expansion from high to low pressure causing molecular rotational temperatures to be below 4 K. For one conformer, 95 pure rotational transitions have been recorded, for the second conformer, 20 pure rotational transitions were recorded. Rotational constants and centrifugal distortion constants are presented for both butyl ethyl ether conformers. The structures of both conformers have been identified by exploring the multi-dimensional molecular potential energy surface using ab initio calculations. From the numerous low energy conformers identified using ab initio methods, the three lowest conformers were pursued at increasingly higher levels of theory, i.e. complete basis set extrapolations, coupled cluster methods, and also taking into consideration zero point vibrational energies. The two conformers observed experimentally are only revealed to be the two lowest energy conformers when high levels of quantum chemical methodologies are employed.  相似文献   

15.
Abstract

Normal coordinate calculations were made for 1-butyne, propionitrile, and the two conformers each of 1-pentyne and butyronitrile, using a thirty-one parameter modified valence force field. Only the triple bond stretching force constant was assumed to be different in the two families of compounds. Twenty force constants were refined to fit 117 frequencies of the six molecules, with the average error being 5.1 cm?1, or 0.65%.  相似文献   

16.
Equilibrium geometries, stabilities and vibrational wavenumbers for conformers of the dihaloheptasilanes X2Si[SiMe(SiMe3)2]2 with X = F, Cl, Br and I were calculated at the density functional B3LYP level employing 6‐311G(d) basis sets and SDD pseudopotentials for Br and I. Two spectroscopically distinct low‐energy conformers were located for all four heptasilanes with energy differences of 5.5, 4.7, 1.9 and 1.2 kJ mol−1 for X = F, Cl, Br and I, respectively. Five more conformers were found for difluoroheptasilane and four for X = Cl, Br and I. They all have relative energies larger than 7.5 and up to 17 kJ mol−1 and are negligibly populated at room temperature. Variable temperature solution Raman spectra (−70 to + 100 °C) in a wavenumber range typical for Si Si stretching vibrations (280‐350 cm−1) confirm these results. For X = Br and I, no temperature effects at all could be observed as a very rapid inter‐conversion between the two low‐energy conformers, which is fast even on the time scale of Raman spectroscopy, occurs. For X = Cl, rapid inter‐conversion also occurs, and a third conformer could be detected at higher temperatures (50–100 °C). For X = F, intensity changes with temperature are consistent with the presence of two low‐energy conformers. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Infrared and Raman spectra were obtained for 2, 3, 3-trimethyl-1-butene, and a vibrational assignment was made with the aid of normal coordinate calculations. Molecular mechanics calculations were also made to determine molecular parameters of the stable conformation. Values for the force constants of a forty-one parameter modified valence force field were obtained that will be used for other 2-methyl-1-alkenes that contain substituted methyl groups.  相似文献   

18.
An exhaustive ab initio and DFT search for energetically stable conformers from the topologically possible set was undertaken on the N-acetyl-phenylalanyl-N-methylamide and N-acetyl-tyrosyl-N-methylamide systems. The geometries of all 81 phenylalanyl and 162 tyrosyl possible rotamers, described under the rules outlined by Multi-Dimensional Conformational Analysis (MDCA), were attempted at each of the RHF/3-21G, RHF/6-31G(d) and B3LYP/6-31G(d) levels of theory. A total of 32 and 66 stable conformational minima were found for the phenylalanyl and tyrosyl amino acid diamides, respectively, at the B3LYP/6-31G(d) level. From the tyrosyl set, 33 unique conformers emerge when the orientation of the A i 3 dihedral angle (p-OH orientation) is disregarded. A total of 31 conformers were common to both sets and showed nearly identical geometries. The comparison of the optimized DFT geometries of the two systems showed near by perfect linear fits with R2 values of 0.9997, 0.9994, 0.9997, and 0.9996 for the φ i , ψ i , A i 1 , and A i 2 dihedral angles, respectively. Relative energies of the matching 31 conformers also fitted to a linear plot with an R2 value of 0.9985. The geometric centroid of the aromatic ring in the sidechain of both systems was found to be within 4.1 ?of the H and O atoms of the peptide groups, in 21 and 2 of the conformers, respectively. None of the non-matching conformers showed any such interaction distance 4.1 ?. Received 1st February 2002 / Received in final form 28 May 2002 Published online 13 September 2002  相似文献   

19.
Potassium isopropyl xanthate, (CH3)2CHOC(S)SK, reacts with methyl chloroformiate ClC(O)OCH3 to yield (methoxycarbonyl) (2‐propoxythiocarbonyl) sulfide, (CH3)2CHOC(S)SC(O)OCH3. This novel xanthogen formate was characterized by 1H and 13C{1H} NMR spectroscopy, mass spectrometry and IR and Raman spectroscopy. The structure of a single crystal of (CH3)2CHOC(S)SC(O)OCH3 was determined by X‐ray diffraction analysis at 173 K. The conformational properties have been studied by liquid IR and Raman spectroscopy, matrix isolation spectroscopy together with photochemical studies and quantum chemical calculations (HF and B3LYP methods with the 6‐31+G* basis set). The analysis of the IR spectrum of liquid (CH3)2CHOC(S)SC(O)OCH3 suggests the presence of two conformers in equilibrium at room temperature. However, in the photochemical matrix study, an equilibrium of three conformers was detected. These forms were further characterized by theoretical calculations. Different photolysis products, such as CH3OC(O)SCH(CH3)2, OCS, CO, CO2 and CS2, were identified by matrix spectroscopy. The IR absorptions of CH3OC(O)SCH(CH3)2, for which literature data are scarce, were analysed in the light of the results of appropriate theoretical calculations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
By the B3P86/6‐311G(3d,2p) method, remote substituent effects on trans‐YCH?CHCH2F were investigated by examining their conformational stabilities, molecular geometries, and stereoelectronic interactions in this paper. The cis conformer is favored for Y?H, Cl, Me, Vinyl, CF3, CN, CHO, and NO2, whereas the gauche is favored for Y?OMe, OH. A correlation of ΔH with the substituent constants σ+(Y) shows that the increasing electron‐withdrawing ability of the substituent Y increases the relative stability of the cis conformer. It was found that the substituent effect on the molecule stabilization energies (relative to CH2?CHCH2F) is more significant in the gauche conformers than in the cis conformers. In agreement, molecular structures of the gauche conformers were also observed to vary more significantly with the substitution than those of the cis conformers. By the second‐order perturbation energy (E(2)) in NBO analysis, it was found that the total C2–C3 vicinal hyperconjugation is determinant in the enthalpy difference and consequently controls the conformational stability. Further analysis shows that the substituent effect on the C2–C3 vicinal hyperconjugations is much higher in the gauche conformers than in the cis conformers. The highly sensitive πC?C→σ*C? F interaction to the substitution in the gauche conformers, is the leading factor in variation of molecular stability and geometry. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号