首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Haiting Yao 《中国物理 B》2022,31(3):38501-038501
Graphene has high light transmittance of 97.7% and ultrafast carrier mobility, which means it has attracted widespread attention in two-dimensional materials. However, the optical absorptivity of single-layer graphene is only 2.3%, and the corresponding photoresponsivity is difficult to produce at normal light irradiation. And the low on—off ratio resulting from the zero bandgap makes it unsuitable for many electronic devices, hindering potential development. The graphene-based heterojunction composed of graphene and other materials has outstanding optical and electrical properties, which can mutually modify the defects of both the graphene and material making it then suitable for optoelectronic devices. In this review, the advantages of graphene-based heterojunctions in the enhancement of the performance of photodetectors are reviewed. Firstly, we focus on the photocurrent generation mechanism of a graphene-based heterojunction photodetector, especially photovoltaic, photoconduction and photogating effects. Secondly, the classification of graphene-based heterojunctions in different directions is summarized. Meanwhile, the latest research progress of graphene-transition metal dichalcogenide (TMD) heterojunction photodetectors with excellent performance in graphene-based heterostructures is introduced. Finally, the difficulties faced by the existing technologies of graphene-based photodetectors are discussed, and further prospects are proposed.  相似文献   

2.
Transition metal dichalcogenides (TMDCs) have suitable and adjustable band gaps, high carrier mobility and yield. Layered TMDCs have attracted great attention due to the structure diversity, stable existence in normal temperature environment and the band gap corresponding to wavelength between infrared and visible region. The ultra-thin, flat, almost defect-free surface, excellent mechanical flexibility and chemical stability provide convenient conditions for the construction of different types of TMDCs heterojunctions. The optoelectric properties of heterojunctions based on TMDCs materials are summarized in this review. Special electronic band structures of TMDCs heterojunctions lead to excellent optoelectric properties. The emitter, p-n diodes, photodetectors and photosensitive devices based on TMDCs heterojunction materials show excellent performance. These devices provide a prototype for the design and development of future high-performance optoelectric devices.  相似文献   

3.
2D layered materials and heterojunctions with excellent ductility and controllable atomic‐layer thicknesses have shown promise for use in advanced electronics and optical functional devices. Tailoring of nanoscale configurations and physical properties is essential and required for bespoke fabrication of advanced devices based on 2D materials. Due to the high strain tolerance of 2D layered materials, strain engineering is an effective method to tune their behaviors of electrons and phonons. A wide variety of 2D materials are available with tunable bandgaps from interface coupling effects, making 2D layered heterojunctions a versatile platform for understanding fundamental physical issues. Most physical properties and functional applications can be tailored by applying strain to 2D layered materials and heterostructures to realize a scheduled target in carrier concentration, mobility, and barrier height. Herein, the latest research on the roles of strain in modulating the physical properties of 2D layered materials and heterojunctions is introduced, focusing on the physical properties behind strain modulation in 2D materials. Understanding and manipulating strain in 2D layered materials and heterojunctions is important and beneficial for creating tunable electronic and optoelectronic constructions with advanced components, including functional flexible and wearable devices.  相似文献   

4.
要想实现弱光探测,需要探测器具有高灵敏度.石墨烯、过渡金属硫化物、黑磷等二维材料因具有宽光谱吸收、带隙可调、高载流子迁移率等良好的光学与电学性能,广泛应用于红外探测器的制作,然而这些材料存在弱光吸收、载流子迁移率低、空气稳定性差等问题,制约了其在高灵敏度红外探测领域的应用.同单一的二维材料相比,二维材料异质结不仅具有各...  相似文献   

5.
Perovskite oxides and heterojunctions have attracted much attention due to their multifunctional properties of electricity and optics and magnetic as well as the very good chemical and thermal stability. In this brief review, we describe the novel progress of researches in the optical characteristic, including ultrafast photoelectric effects of picosecond order in perovskite oxide single crystals, thin-films and heterojunctions, high-sensitive photovoltages, the enhanced transient lateral photovoltages in perovskite oxide thin-films and heterojunctions, and the high-sensitive ultraviolet (UV) photodetectors based on perovskite oxides. The recent advances present in this paper not only could stimulate theoretical studies on the mechanism but also would open up the possibilities in the developments of optoelectronic devices based on perovskite oxides and heterojunctions.  相似文献   

6.
HgCdTe remains the most important material for infrared (IR) photodetectors despite numerous attempts to replace it with alternative materials such as closely related mercury alloys (HgZnTe, HgMnTe), Schottky barriers on silicon, SiGe heterojunctions, GaAs/AlGaAs multiple quantum wells, InAs/GaInSb strained layer superlattices, high temperature superconductors and especially two types of thermal detectors: pyroelectric detectors and silicon bolometers. It is interesting, however, that none of these competitors can compete in terms of fundamental properties. In addition, HgCdTe exhibits nearly constant lattice parameter which is of extreme importance for new devices based on complex heterostructures. The development of sophisticated controllable vapour phase epitaxial growth methods, such as MBE and MOCVD, has allowed fabrication of almost ideally designed heterojunction photodiodes. In this paper, examples of novel devices based on heterostructures operating in the long wavelength, middle wavelength and short wavelength spectral ranges are presented. Recently, more interest has been focused on p–n junction heterostructures. As infrared technology continues to advance, there is a growing demand for multispectral detectors for advanced IR systems with better target discrimination and identification. HgCdTe heterojunction detectors offer wavelength flexibility from medium wavelength to very long wavelength and multicolour capability in these regions. Recent progress in two-colour HgCdTe detectors is also reviewed.  相似文献   

7.
硅基探测成像器件具有可靠性高、易集成和成本低等优点,是目前应用最广泛的探测成像器件。随着人工智能和无人驾驶等技术的日益发展,对探测成像器件提出了更高的要求,而硅基探测成像器件性能的提升成为重要的研究方向。量子点具有吸收系数大、光谱可调、发光效率高和易集成等优点,是一类优异的光谱转换和光调制材料。利用量子点材料可调制的光学特性,可以对硅基探测成像器件的功能进行拓展,从而实现紫外响应增强、红外响应拓展、紫外偏振探测和多光谱成像等功能。经过多年的研究,这一领域已经取得了一定的进展,部分技术展现出较好的应用前景。本文介绍了量子点增强硅基探测器在紫外探测、红外成像、偏振探测和多光谱成像方面的研究进展,希望能够引起国内学术界和工业界的关注和重视。  相似文献   

8.
Hsiang-Chun Wang 《中国物理 B》2023,32(1):18504-018504
Photodetectors based on two-dimensional (2D) materials have attracted considerable attention because of their unique properties. To further improve the performance of self-driven photodetectors based on van der Waals heterojunctions, a conductive band minimum (CBM) matched self-driven SnS2/WS2 van der Waals heterojunction photodetector based on a SiO2/Si substrate has been designed. The device exhibits a positive current at zero voltage under 365 nm laser illumination. This is attributed to the built-in electric field at the interface of the SnS2 and WS2 layer, which will separate and transport the photogenerated carriers, even at zero bias voltage. In addition, the Al2O3 layer is covered by the surface of the SnS2/WS2 photodetector to further improve the performance, because the Al2O3 layer will introduce tensile stress on the surface of the 2D materials leading to a higher electron concentration and smaller effective mass of electrons in the films. This work provides an idea for the research of self-driven photodetectors based on a van der Waals heterogeneous junction.  相似文献   

9.
自石墨烯被发现以来,二维材料因其优异的特性获得了持续且深入的探索与发展,以石墨烯、六方氮化硼、过渡金属硫化物、黑磷等为代表的二维材料相关研究层出不穷.随着二维新材料制备与应用探索的不断发展,单一材料性能的不足逐渐凸显,研究者们开始考虑采用平面拼接和层间堆垛所产生的协同效应来弥补单一材料的不足,甚至获得一些新的性能.利用二维材料晶格结构的匹配构建异质结,实现特定的功能化,或利用范德瓦耳斯力进行堆垛,将不同二维材料排列组合,从而在体系里引入新的自由度,为二维材料的性质研究和实际应用打开了新的窗口.本文从原子制造角度,介绍了二维平面和范德瓦耳斯异质结材料的可控制备和光电应用.首先简要介绍了应用于异质结制备的常见二维材料的分类及异质结的相关概念,然后从原理上分类列举了常用的表征方法,随后介绍了平面和垂直异质结的制备方法,并对其光电性质及器件应用做了简要介绍.最后,对领域内存在的问题进行了讨论,对未来发展方向做出了展望.  相似文献   

10.
We have fabricated photodetectors based on electron–accepting and electron-donating organic materials. Multiple heterojunctions between the donor and acceptor layers were introduced. The thickness of the donor and acceptor materials was controlled in the molecular scale. By keeping the total thickness of the devices the same, we have studied the performance of the photodetectors as a function of the number of such molecular-level interfaces. The results showed that the number of donor–acceptor interfaces enhanced exciton dissociation but, at the same time, hindered charge transport by introducing energy barriers. We have shown that a trade-off between the two effects existed at an optimum number of donor–acceptor interfaces, where the device showed better photodetector performance.  相似文献   

11.
近年来,二维材料独特的物理、化学和电子特性受到了越来越多的科研人员的关注.特别是石墨烯、黑磷和过渡金属硫化物等二维材料具有优良的光电性能和输运性质,使其在下一代光电子器件领域具有广阔的应用前景.本文将主要介绍二维材料在光电探测领域上的应用优势,概述光电探测器的基本原理和参数指标,重点探讨光栅效应与传统光电导效应的区别,...  相似文献   

12.
Qian Liang 《中国物理 B》2022,31(8):87101-087101
Reducing the Schottky barrier height (SBH) and even achieving the transition from Schottky contacts to Ohmic contacts are key challenges of achieving high energy efficiency and high-performance power devices. In this paper, the modulation effects of biaxial strain on the electronic properties and Schottky barrier of MoSi2N4 (MSN)/graphene and WSi2N4 (WSN)/graphene heterojunctions are examined by using first principles calculations. After the construction of heterojunctions, the electronic structures of MSN, WSN, and graphene are well preserved. Herein, we show that by applying suitable external strain to a heterojunction stacked by MSN or WSN — an emerging two-dimensional (2D) semiconductor family with excellent mechanical properties — and graphene, the heterojunction can be transformed from Schottky p-type contacts into n-type contacts, even highly efficient Ohmic contacts, making it of critical importance to unleash the tremendous potentials of graphene-based van der Waals (vdW) heterojunctions. Not only are these findings invaluable for designing high-performance graphene-based electronic devices, but also they provide an effective route to realizing dynamic switching either between n-type and p-type Schottky contacts, or between Schottky contacts and Ohmic contacts.  相似文献   

13.
The optical and electrical characteristics of heterojunction organic photovoltaic cells consisting of tin–phthalocyanine as a p-type semiconductor and fullerene as an n-type semiconductor were studied using multiple-layer structures incorporating two hetero-junctions. In order to prevent formation of a reverse heterojunction, an ultra-thin layer of Au clusters was set between dual heterojunctions. The power conversion efficiencies of the cells were evaluated and the efficiency of the cell with two incorporated heterojunctions was found to be 4.5 times greater than that of a single hetero-junction. By using surface plasmon polaritons, the power conversion efficiency of an Al/C⋐70/SnPc/Au cell was enhanced and increased by a factor of 3.  相似文献   

14.
Single-element two-dimensional (2D) tellurium (Te) which possesses an unusual quasi-one-dimensional atomic chain structure is a new member in 2D materials family. 2D Te possesses high carrier mobility, wide tunable bandgap, strong light-matter interaction, better environmental stability, and strong anisotropy, making Te exhibit tremendous application potential in next-generation electronic and optoelectronic devices. However, as an emerging 2D material, the research on fundamental property and device application of Te is still in its infancy. Hence, this review summarizes the most recent research progresses about the new star 2D Te and discusses its future development direction. Firstly, the structural features, basic physical properties, and various preparation methods of 2D Te are systemically introduced. Then, we emphatically summarize the booming development of 2D Te-based electronic and optoelectronic devices including field effect transistors, photodetectors and van der Waals heterostructure photodiodes. Finally, the future challenges, opportunities, and development directions of 2D Te-based electronic and optoelectronic devices are prospected.  相似文献   

15.
In this paper we suggest a number of device applications of n-i-p-i doping superlattices. The concept of these devices is based on the unusual electronic properties of this new class of semiconductors such as extremely long excess carrier lifetime, tunable band gap and carrier concentration. Emphasis will be on high-sensitivity low-noise photodetectors, tunable lasers, optical amplifiers, and on ultrafast devices for the generation, modulation and detection of optical signals.  相似文献   

16.
葛翠环  李洪来  朱小莉  潘安练 《中国物理 B》2017,26(3):34208-034208
Atomically thin two-dimensional(2D) layered materials have potential applications in nanoelectronics, nanophotonics, and integrated optoelectronics. Band gap engineering of these 2D semiconductors is critical for their broad applications in high-performance integrated devices, such as broad-band photodetectors, multi-color light emitting diodes(LEDs), and high-efficiency photovoltaic devices. In this review, we will summarize the recent progress on the controlled growth of composition modulated atomically thin 2D semiconductor alloys with band gaps tuned in a wide range, as well as their induced applications in broadly tunable optoelectronic components. The band gap engineered 2D semiconductors could open up an exciting opportunity for probing their fundamental physical properties in 2D systems and may find diverse applications in functional electronic/optoelectronic devices.  相似文献   

17.
We report an electro-photo double modulation of the fermi level in a WSe2/graphene heterojunction. The heterojunction exhibits high ION/IOFF ratio (~103) in transfer characteristic in dark and distinct rectification behavior in output characteristic under light illumination, respectively. Time-dependent photoresponse reveals that the heterojunction has a considerable potential in the application of photodetection. Interestingly, an exotic current peak is observed in transfer characteristic under light illumination. This novel behavior is attributed to the tunable fermi level at the WSe2/graphene heterojunction by electro-photo double modulation. The results may be helpful to develop tunable photovoltaic optoelectronics based on van der Waals heterojunctions.  相似文献   

18.
李梓维  胡义涵  李瑜  方哲宇 《中国物理 B》2017,26(3):36802-036802
In the last decade, the rise of two-dimensional(2D) materials has attracted a tremendous amount of interest for the entire field of photonics and opto-electronics. The mechanism of light–matter interaction in 2D materials challenges the knowledge of materials physics, which drives the rapid development of materials synthesis and device applications. 2D materials coupled with plasmonic effects show impressive optical characteristics, involving efficient charge transfer, plasmonic hot electrons doping, enhanced light-emitting, and ultrasensitive photodetection. Here, we briefly review the recent remarkable progress of 2D materials, mainly on graphene and transition metal dichalcogenides, focusing on their tunable optical properties and improved opto-electronic devices with plasmonic effects. The mechanism of plasmon enhanced light–matter interaction in 2D materials is elaborated in detail, and the state-of-the-art of device applications is comprehensively described. In the future, the field of 2D materials holds great promise as an important platform for materials science and opto-electronic engineering, enabling an emerging interdisciplinary research field spanning from clean energy to information technology.  相似文献   

19.
Because of long‐range order and high chemical purity, organic crystals have exhibit unique properties and attracted a lot of interest for application in solid‐state lasers. As optical gain materials, they exhibit high stimulated emission cross section and broad tunable wavelength emission as similar to their amorphous counterpart; moreover, high purity and high order give them superior properties such as low scattering trap densities, high thermal stability, as well as highly polarized emission. As electronic materials, they are potentially able to support high current densities, thus making it possible to realize current driven lasers. This paper mainly describes recent research progress in organic semiconductor laser crystals. The building molecules, crystal growth methods, as well as their stimulated emission characteristics related with crystal structures are introduced; in addition, the current state‐of‐the‐art in the field of crystal laser devices is reviewed. Furthermore, recent advances of crystal lasers at the nanoscale and single crystal light‐emitting transistors (LETs) are presented. Finally, an outlook and personal view is provided on the further developments of laser crystals and their applications.  相似文献   

20.
1 Introduction  Inrecentyears ,significantdevelopmenthasbeenachievedforWDMopticalfibercommunications,andhighperformancephotodetectorshasbecomeanassetwithregardtoobtaininganarrowspectralresponselinewidthandwavelength tunable[1,2 ] .Theresonantcavityenhanced …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号