首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spectral properties of the two-dimensional Hubbard model near the Mott transition are investigated by using cluster perturbation theory. The Mott transition is characterized by freezing of the charge degrees of freedom in a single-particle excitation that leads continuously to the magnetic excitation of the Mott insulator. Various anomalous spectral features observed in cuprate high-temperature superconductors are explained in a unified manner as properties near the Mott transition.  相似文献   

2.
3.
We apply the slave-boson approach of Kotliar and Ruckenstein to the two-band Hubbard model with an Ising like Hund's rule coupling and bands of different widths. On the mean-field level of this approach we investigate the Mott transition and observe both separate and joint transitions of the two bands depending on the choice of the inter- and intra-orbital Coulomb interaction parameters. The mean-field calculations allow for a simple physical interpretation and can confirm several aspects of previous work. Beside the case of two individually half-filled bands we also examine what happens if the original metallic bands possess fractional filling either due to finite doping or due to a crystal field which relatively shifts the atomic energy levels of the two orbitals. For appropriate values of the interaction and of the crystal field we can observe a band insulating state and a ferromagnetic metal.  相似文献   

4.
The asymmetric Hubbard model with hopping integrals dependent on an electron spin (particle sort) is studied using an approximate analytic method within the dynamical mean-field theory. The equations of motion for Hubbard operators followed by projecting and different-time decoupling are used for solving the single-site problem. Particle spectra are investigated at half-filling within various approximations (Hubbard-I, alloy-analogy and a generalization of the Hubbard-III approximation). At half-filling these approximations can describe only continuous gap opening in the spectrum. The approach is used to describe the system between two limit cases (the Falicov-Kimball model and the standard Hubbard model) with continuous transition where Uc is dependent on the value of hopping parameters of different particles.  相似文献   

5.
The Mott metal-insulator transition in the two-band Hubbard model in infinite dimensions is studied by using the linearized dynamical mean-field theory recently developed by Bulla and Potthoff. The phase boundary of the metal-insulator transition is obtained analytically as a function of the on-site Coulomb interaction at the d-orbital, the charge-transfer energy between the d- and p-orbitals and the hopping integrals between p-d, d-d and p-p orbitals. The result is in good agreement with the numerical results obtained from the exact diagonalization method. Received 5 October 2000 and Received in final form 8 December 2000  相似文献   

6.
We consider a model of spinless fermions on the square latticeZ 2 with an interaction potential of strengthU>0 at distance one and strengthJ at distance two, in the largeU limit |t|, |J|U, wheret is the hopping amplitude. As the chemical potential is varied, ift=T=0 we find three different phases corresponding to full, half and zero filling fractions. We study the system at low temperatureT0 by a method involving a canonical transformation and a functional integral representation. IfT=0 we locate the phase boundaries of the Mott metal-insulator transition for all |J|U with upper and lower bounds, show that mean field theory is valid ifJ<0 but fails forJ=0 when also the Peierls condition is violated. This result is a quantum extension of the Pirogov-Sinai theory of phase transitions. IfT>0 we have only one sided bounds for the phase boundaries and we can't validate mean field theory in caseJ<0. We introduce a new resummation scheme for low temperature expansions which yields finite and convergent perturbation series and permits us to study issues like the sign problem. Our algorithm gives an optimal canonical transformation for the functional integral such that the expectation of the sign observableS is exp , whereV is the volume and =T –1.Partially supported by the Ambrose Monell Foundation during a visit to the Institute for Advanced study.  相似文献   

7.
The ten-fold spin-orbital degeneracy of true d-electrons is included in the non-spin-orbitally degenerate Hubbard model treatment theory of the Mott metal-insulator transition of Rice and Brinkman, and Gutzwiller. The Rice-Brinkman and Kohn phase diagrams of the Mott metal-insulator transition are shown to shift due to spin-orbital degeneracy of true d-electrons so as to increase the available phase space in the temperature-“interaction” Mott phase diagram for the formation of the antiferromagnetic insulator, superlattice metal or superlattice insulator states in these phase diagrams.  相似文献   

8.
9.
The Mott transition in a two-band Hubbard model involving subbands of different widths is studied as a function of temperature using dynamical mean field theory combined with exact diagonalization. The phase diagram is shown to exhibit two successive first-order transitions if the full Hund's rule coupling is included. In the absence of spin-flip and pair-exchange terms the lower transition remains first-order while the upper becomes continuous.  相似文献   

10.
王义林  黄理  杜亮  戴希 《中国物理 B》2016,25(3):37103-037103
We have studied the doping-driven orbital-selective Mott transition in multi-band Hubbard models with equal band width in the presence of crystal field splitting. Crystal field splitting lifts one of the bands while leaving the others degenerate. We use single-site dynamical mean-field theory combined with continuous time quantum Monte Carlo impurity solver to calculate a phase diagram as a function of total electron filling N and crystal field splitting Δ. We find a large region of orbital-selective Mott phase in the phase diagram when the doping is large enough. Further analysis indicates that the large region of orbital-selective Mott phase is driven and stabilized by doping. Such models may account for the orbital-selective Mott transition in some doped realistic strongly correlated materials.  相似文献   

11.
The connectivity and tunability of superconducting quantum devices provide a rich platform to build quantum simulators and study novel many-body physics. Here we study quantum phase transition in a detuned multi-connected Jaynes-Cummings lattice, which can be constructed with superconducting circuits. This model is composed of alternatively connected qubits and cavity modes.Using a numerical method, we show that by varying the detuning between the qubits and the cavities, a phase transition from the superfluid phase to the Mott insulator phase occurs at commensurate fillings in a one-dimensional array. We study the phase transition in lattices with symmetric and asymmetric couplings, respectively.  相似文献   

12.
We show within the slave-boson technique that the Anderson lattice model exhibits a Kondo breakdown quantum critical point where the hybridization goes to zero at zero temperature. At this fixed point, the f electrons experience as well a selective Mott transition separating a local-moment phase from a Kondo-screened phase. The presence of a multiscale quantum critical point in the Anderson lattice in the absence of magnetism is discussed in the context of heavy fermion compounds. This study is the first evidence for a selective Mott transition in the Anderson lattice.  相似文献   

13.
We have investigated the Mott transition in a quasi-two-dimensional Mott insulator EtMe{3}P[Pd(dmit){2}]{2} with a spin-frustrated triangular-lattice in hydrostatic pressure and magnetic-field [Et and Me denote C2H5 and CH3, respectively, and Pd(dmit){2} (dmit=1,3-dithiole-2-thione-4,5-dithiolate,dithiolate) is an electron-acceptor molecule]. In the pressure-temperature (P-T) phase diagram, a valence-bond solid phase is found to neighbor the superconductor and metal phases at low temperatures. The profile of the phase diagram is common to those of Mott insulators with antiferromagnetic order. In contrast to the antiferromagnetic Mott insulators, the resistivity in the metallic phase exhibits anomalous temperature dependence, rho=rho{0}+AT(2.5).  相似文献   

14.
15.
16.
17.
18.
19.
The mass-imbalanced Hubbard model represents a continuous evolution from the Hubbard to the Falicov-Kimball model. We employ dynamical mean field theory and study the paramagnetic metal-insulator transition, which has a very different nature for the two limiting models. Our results indicate that the metal-insulator transition rather resembles that of the Hubbard model as soon as a tiny hopping between the more localized fermions is switched on. At low temperatures we observe a first-order metal-insulator transition and a three peak structure. The width of the central peak is the same for the more and less mobile fermions when approaching the phase transition, which agrees with our expectation of a common Kondo temperature and phase transition for the two species.  相似文献   

20.
Yu Chen 《理论物理通讯》2022,74(12):125701
The combination of strong correlation and emergent lattice can be achieved when quantum gases are confined in a superradiant Fabry–Perot cavity. In addition to the discoveries of exotic phases, such as density wave ordered Mott insulator and superfluid, a surprising kink structure is found in the slope of the cavity strength as a function of the pumping strength. In this article, we show that the appearance of such a kink is a manifestation of a liquid–vapour-like transition between two superfluids with different densities. The slopes in the immediate neighborhood of the kink become divergent at the liquid–vapour critical points and display a critical scaling law with a critical exponent 1 in the quantum critical region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号