首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 901 毫秒
1.
采用螺旋波等离子体化学气相沉积技术以N2/SiH4/H2为反应气体制备了镶嵌有纳米非晶硅颗粒的氢化氮化硅薄膜,通过改变N2流量实现了薄膜从红到蓝绿的可调谐光致发光.傅里叶红外透射和紫外-可见光吸收特性分析表明,所生长薄膜具有较高的氢含量,N2流量增加使氢的键合结构发生变化,非晶硅颗粒尺寸减小,所对应的薄膜的光学带隙逐渐增加和微观结构有序度减小.可调光致发光(PL)主要来源于纳米硅颗粒的量子限制效应发光,随N2流量增加,PL的谱线展宽并逐渐增强. 关键词: 傅里叶红外透射谱 光吸收谱 纳米硅粒子镶嵌薄膜 光致发光  相似文献   

2.
Zr-Si-N films were deposited on silicon and steel substrates by cathodic vacuum arc with different N2/SiH4 flow rates. The N2/SiH4 flow rates were adjusted at the range from 0 to 12 sccm. The films were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), hardness and wear tests. The structure and the mechanical properties of Zr-Si-N films were compared to those of ZrN films. The results of XRD and XPS showed that Zr-Si-N films consisted of ZrN crystallites and SiNx amorphous phase. With increasing N2/SiH4 flow rates, the orientation of Zr-Si-N films became to a mixture of (1 1 1) and (2 0 0). The column width became smaller, and then appeared to vanish with the increase in N2/SiH4 flow rates. The hardness and Young's modulus of Zr-Si-N films increased with the N2/SiH4 flow rates, reached a maximum value of 36 GPa and 320 GPa at 9 sccm, and then decreased 32 GPa and 305 GPa at 12 sccm, respectively. A low and stable of friction coefficient was obtained for the Zr-Si-N films. Friction coefficient was about 0.1.  相似文献   

3.
The formation of silicon nanoclusters embedded in amorphous silicon nitride (SiNx:H) can be of great interest for optoelectronic devices such as solar cells. Here amorphous SiNx:H layers have been deposited by remote microwave-assisted chemical vapor deposition at 300 °C substrate temperature and with different ammonia [NH3]/silane [SiH4] gas flow ratios (R=0.5−5). Post-thermal annealing was carried out at 700 °C during 30 min to form the silicon nanoclusters. The composition of the layers was determined by Rutherford back scattering (RBS) and elastic recoil detection analysis (ERDA). Fourier transform infrared spectroscopy (FTIR) showed that the densities of SiH (2160 cm−1) and NH (3330 cm−1) molecules are reduced after thermal annealing for SiN:H films deposited at flow gas ratio R>1.5. Breaking the SiH bonding provide Si atoms in excess in the bulk of the layer, which can nucleate and form Si nanostructures. The analysis of the photoluminescence (PL) spectra for different stoichiometric layers showed a strong dependence of the peak characteristics (position, intensity, etc.) on the gas flow ratio. On the other hand, transmission electron microscopy (TEM) analysis proves the presence of silicon nanoclusters embedded in the films deposited at a gas flow ratio of R=2 and annealed at 700 °C (30 min).  相似文献   

4.
Structural and optical properties of a-SiNx films deposited by electron cyclotron resonance chemical vapor deposition (ECRCVD) have been investigated. The Fourier transform infrared (FTIR) spectroscopy shows the structural evolution of the SiNx films, which are defined as Si-rich SiNx and N-rich SiNx films, also confirmed by Raman spectroscopy. The origin of the light emission for SiNx films may be attributed to two mechanisms, i.e., quantum confinement effect (QCE) and transition of defect energy levels. The correlation between light emission and structures of SiNx films is discussed.  相似文献   

5.
Thin films of amorphous Se100−xSbx (x=5,10 and 20 at%) system are deposited on a silicon substrate at room temperature (300 K) by thermal evaporation technique. The optical constant such as refractive index (n) has been determined by a method based on the envelope curves of the optical transmission spectrum at normal incidence by a Swanpoel method. The oscillator energy (Eo), dispersion energy (Ed) and other parameters have been determined by the Wemple–DiDomenico method. The absorption coefficient (α) has been determined from the reflectivity and transmitivity spectrum in the range 300–2500 nm. The optical-absorption data indicate that the absorption mechanism is a non-direct transition. We found that the optical band gap, Egopt, decreases from 1.66±0.01 to 1.35±0.01 eV with increase Sb content.  相似文献   

6.
王树林  程如光 《物理学报》1988,37(7):1119-1123
采用带有可转动掩板的沉积系统,合成出一类新的a-Si:H/掺杂a-SiNx:H超晶格。样品中各子层厚度及a-SiNx:H子层中N/Si比固定,仅改变掺杂浓度。结果发现:此类超晶格中的费密能级可以通过a-SiNx:H层中的掺杂来控制,即a-Si:H/a-SiNx:H超晶格可以从n型转变为p型,依赖于a-SiNx:H子层中B的掺杂比。然而,a-SiNx:H子层中P的掺杂对a-Si:H/a-SiNx:H超晶格传输特性影响并不大。 关键词:  相似文献   

7.
利用直流脉冲磁控溅射法在室温下制备无氢SiNx薄膜.通过傅里叶变换红外光谱、台阶仪、紫外—可见分光光度计、接触角测量仪、透湿测试仪等表征技术,分析了N2流量、Si靶溅射功率等实验参数对SiNx薄膜成分、结构、及阻透性能、透光性能、接触角等性能的影响.研究结果表明,Si靶溅射功率固定时,在低N2流量条件下,或N2流量固定时,在高Si靶溅射功率条件下,制备的SiN 关键词x')" href="#">SiNx 磁控溅射 微观结构 阻透性能  相似文献   

8.
This paper reports that amorphous silicon nitride (a-SiNx) overcoats were deposited at room temperature by microwave ECR plasma enhanced unbalanced magnetron sputtering. The 2 nm a-SiNx overcoat has better anti-corrosion properties than that of reference a-CNx overcoats (2-4.5 nm). The superior anti-corrosion performance is attributed to its stoichiometric bond structure, where 94.8% Si atoms form Si-N asymmetric stretching vibration bonds. The N/Si ratio is 1.33 as in the stoichiometry of Si3N4 and corresponds to the highest hardness of 25.0 GPa. The surface is atomically smooth with RMS < 0.2 nm. The ultra-thin a-SiNx overcoats are promising for hard disks and read/write heads protective coatings.  相似文献   

9.
丁万昱  徐军  陆文琪  邓新绿  董闯 《物理学报》2008,57(8):5170-5175
利用微波电子回旋共振增强磁控反应溅射法在不同基片温度下制备无氢SiNx薄膜.通过傅里叶变换红外光谱、透射电子显微镜、台阶仪、纳米硬度仪等表征技术,研究了基片温度对SiNx薄膜结晶状态、晶粒尺寸、晶体取向等结晶性能以及薄膜的生长速率、硬度等机械性能的影响,并探讨了薄膜结晶性能与机械性能之间的关系.研究结果表明,在基片温度低于300℃时制备的SiNx薄膜以非晶状态存在,硬度值仅为18GPa左右;基片温度 关键词x')" href="#">SiNx 磁控溅射 微观结构 硬度  相似文献   

10.
We have investigated the phase separation and silicon nanocrystal (Si NC) formation in correlation with the optical properties of Si suboxide (SiOx, 0 < x < 2) films by thermal annealing in high vacuum. The SiOx films were deposited by plasma-enhanced chemical vapor deposition at different nitrous oxide/silane (N2O/SiH4) flow ratios. The as-deposited films show increased Si concentration with decreasing N2O/SiH4 flow ratio, while the deposition rate and surface roughness have strong correlations with the flow ratio in the N2O/SiH4 reaction. After thermal annealing at temperatures above 1000 °C, Fourier transform infrared spectroscopy, Raman spectroscopy, and transmission electron microscopy manifest the progressive phase separation and continuous growth of crystalline-Si (c-Si) NCs in the SiOx films with increasing annealing temperature. We observe a transition from multiple-peak to single peak of the strong red-range photoluminescence (PL) with increasing Si concentration and annealing temperature. The appearance of the single peak in the PL is closely related to the c-Si NC formation. The PL also redshifts from ∼1.9 to 1.4 eV with increasing Si concentration and annealing temperature (i.e., increasing NC size). The good agreements of the PL evolution with NC formation and the PL peak energy with NC size distribution support the quantum confinement model.  相似文献   

11.
In this work, hydrogenated amorphous silicon carbide (α-Si1−xCx:H) and nanocrystalline SiC (nc-SiC) thin films were deposited by hot wire CVD (HWCVD) using SiH4/C2H2/H2 gas mixtures. It was found that the films prepared under low gas pressure were α-Si1−xCx:H and those prepared under high gas pressure were nc-3C-SiC. The α-Si1−xCx:H films showed enhanced density of C-Hn and Si-C bonds with increasing C2H2 fraction, which induced an increase in optical gap from 1.8 to 3.0 eV. For the deposition process of nc-SiC, the Eg opt of the deposited films varied from 1.9 eV to 2.5 eV as the filament temperature increased from 1700 to 2100 °C. The deposition rate decreased rapidly from 5.74 nm/min to 0.8 nm/min with increasing TF.  相似文献   

12.
丁万昱  徐军  陆文琪  邓新绿  董闯 《物理学报》2009,58(6):4109-4116
利用微波电子回旋共振等离子体增强非平衡磁控溅射法在不同N2流量下制备无氢SiNx薄膜.通过X光电子能谱、纳米硬度仪等表征技术,研究了不同N2流量下制备的SiNx薄膜的化学键结构、化学键含量、元素配比及各元素沿深度分布.研究结果表明,N2流量是影响SiNx薄膜化学键结构、元素配比、元素延深度分布等性质的主要因素.在N2关键词: x')" href="#">SiNx 磁控溅射 XPS 化学键结构  相似文献   

13.
Hydrogenated amorphous silicon carbon alloys (a-SiC:H) films were deposited by hot wire chemical vapour deposition (HWCVD) using SiH4 and C2H2 as precursor gases. a-SiC:H films were characterized by Fourier Transform Infrared (FTIR) spectroscopy, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Solid-state plasmon of Si network shifts from 19.2 to 20.5 eV by varying C2H2 flow rate from 2 to 10 sccm. Incorporation of carbon content changes the valence band structure and s orbital is more dominant than sp and p orbital with carbon incorporation.  相似文献   

14.
<正>The structural un-uniformity of μc-Si:H films prepared using a very high frequency plasma-enhanced chemical vapour deposition method has been investigated by Raman spectroscopy,spectroscopic ellipsometer and atomic force microscopy.It was found that the formation of amorphous incubation layer was caused by the back diffusion of SiH_4 and the amorphous induction of glass surface during the initial ignition process,and growth of the incubation layer can be suppressed and uniformμc-Si:H phase is generated by the application of delayed initial SiH_4 density and silane profiling methods.  相似文献   

15.
Hydrogenated amorphous silicon carbide (a-Si1-xCx:H) films were deposited by RF plasma enhanced chemical vapor deposition (PECVD) and subsequently annealed in N2 atmosphere at different temperatures. Systematic investigations of the deposition temperature and annealing effect on the film's properties, including film thicknesses, optical bandgap, refractive indexes, absorption coefficient (α), chemical bond configurations, stoichiometry and crystalline structures, were performed using ellipsometry, FTIR absorbance spectroscopy, Raman spectroscopy, XPS, and XRD. All of the results indicate that the structural and optical properties of the a-Si1-xCx:H film can be effectively engineered by proper annealing conditions. Moreover, molecular vibrational level equation was introduced to explain the peak shift detected by FTIR and Raman spectroscopy.  相似文献   

16.
A theoretical analysis of thermostimulated conductivity spectra TSC(T) has been applied to determine the density of gap states g(E) in a-Si: H and a-Si: H/a-SiN x : H multilayer structures. The results for g(E) are consistent with the results deduced from Fritzsche's analytical approach as well as other methods. A comparison has been made between the two different analytical approaches for TSC(T). We discuss the relationship between the energy of maximum thermostimulated current emission E m and quasi-Fermi level E q. We demonstrate that E q could be a better parameter than E m in the general theoretical treatment of thermostimulated conductivity.  相似文献   

17.
Hydrogenated amorphous silicon carbon nitride (a-SiCN:H) thin films were deposited by hot wire chemical vapor deposition (HWCVD) using SiH4, CH4, NH3 and H2 as precursors. The effects of the H2 dilution on structural and chemical bonding of a-SiCN:H has been investigated by Raman and X-ray photoelectron spectroscopy (XPS). Increasing the H2 flow rate in the precursor gas more carbon is introduced into the a-SiCN:H network resulting in decrease of silicon content in the film from 41 at.% to 28.8 at.% and sp2 carbon cluster increases when H2 flow rate is increased from 0 to 20 sccm.  相似文献   

18.
为适应宽光谱高效率硅基薄膜太阳电池的应用需求,本文尝试采用直流磁控溅射技术在553 K衬底温度下生长氢化Mg和Ga共掺杂ZnO(HMGZO)透明导电氧化物(TCO)薄膜.通过对薄膜微观结构、表面形貌、电学以及光学性能的测试和分析,详细地研究了氢气(H2)流量(0—16.0 sccm)对HMGZO薄膜结晶特性及光电性能的影响.实验结果表明:生长获得的HMGZO薄膜均为六角纤锌矿结构的多晶薄膜,择优取向为(002)晶面生长方向.薄膜的生长速率随着氢气流量的增加呈现逐渐减小趋势,主要归因于溅射产额的减小.适当的氢气引入会引起晶粒尺寸的增加.随着氢气流量由0增加至4.0 sccm,ZnO薄膜电阻率从177?·cm急剧减小至7.2×10-3?·cm,主要是由于H施主的引入显著地增加了载流子浓度;然而进一步增加氢气流量(4.0—16.0 sccm)造成电阻率的轻微增加,主要归因于载流子浓度的减小以及过多氢杂质引入造成杂质散射的增加.所有生长获得的HMGZO薄膜平均光学透过率在波长λ~320—1100 nm范围内可达87%以上.由于Mg的作用及Burstein-Moss效应的影响造成了带隙展宽,带隙变化范围~3.49—3.70 eV,其中最大光学带隙Eg可达~3.70 eV.  相似文献   

19.
The Hydrogenated silicon nitride (SiNx:H) using plasma enhanced chemical vapor deposition is widely used in photovoltaic industry as an antireflection coating and passivation layer. In the high temperature firing process, the SiNx:H film should not change the properties for its use as high quality surface layer in crystalline silicon solar cells. For optimizing surface layer in crystalline silicon solar cells, by varying gas mixture ratios (SiH4 + NH3 + N2, SiH4 + NH3, SiH4 + N2), the hydrogenated silicon nitride films were analyzed for its antireflection and surface passivation (electrical and chemical) properties. The film deposited with the gas mixture of SiH4 + NH3 + N2 showed the best properties in before and after firing process conditions.The single crystalline silicon solar cells fabricated according to optimized gas mixture condition (SiH4 + NH3 + N2) on large area substrate of size 156 mm × 156 mm (Pseudo square) was found to have the conversion efficiency as high as 17.2%. The reason for the high efficiency using SiH4 + NH3 + N2 is because of the good optical transmittance and passivation properties. Optimized hydrogenated silicon nitride surface layer and high efficiency crystalline silicon solar cells fabrication sequence has also been explained in this study.  相似文献   

20.
侯国付  耿新华  张晓丹  孙建  张建军  赵颖 《中国物理 B》2011,20(7):77802-077802
A series of hydrogenated silicon thin films with varying silane concentrations have been deposited by using very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) method. The deposition process and the silicon thin films are studied by using optical emission spectroscopy (OES) and Fourier transfer infrared (FTIR) spectroscopy, respectively. The results show that when the silane concentration changes from 10% to 1%, the peak frequency of the Si—H stretching mode shifts from 2000 cm - 1 to 2100 cm - 1, while the peak frequency of the Si—H wagging—rocking mode shifts from 650 cm - 1 to 620 cm - 1. At the same time the SiH*/Hα intensity ratio in the plasma decreases gradually. The evolution of the infrared spectra and the optical emission spectra demonstrates a morphological phase transition from amorphous silicon (a-Si:H) to microcrystalline silicon (μc-Si:H). The structural evolution and the μc-Si:H formation have been analyzed based on the variation of Hα and SiH* intensities in the plasma. The role of oxygen impurity during the plasma process and in the silicon films is also discussed in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号