首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An ultra-low specific on-resistance(Ron,sp) oxide trench-type silicon-on-insulator(SOI) lateral double-diffusion metal–oxide semiconductor(LDMOS) with an enhanced breakdown voltage(BV) is proposed and investigated by simulation. There are two key features in the proposed device: one is a U-shaped gate around the oxide trench, which extends from source to drain(UG LDMOS); the other is an N pillar and P pillar located in the trench sidewall. In the on-state, electrons accumulate along the U-shaped gate, providing a continuous low resistance current path from source to drain. The Ron,sp is thus greatly reduced and almost independent of the drift region doping concentration. In the off-state, the N and P pillars not only enhance the electric field(E-field) strength of the trench oxide, but also improve the E-field distribution in the drift region, leading to a significant improvement in the BV. The BV of 662 V and Ron,sp of 12.4 m?·cm2are achieved for the proposed UG LDMOS. The BV is increased by 88.6% and the Ron,sp is reduced by 96.4%, compared with those of the conventional trench LDMOS(CT LDMOS), realizing the state-of-the-art trade-off between BV and Ron,sp.  相似文献   

2.
A novel low specific on-resistance (Ron,sp) lateral double-diffused metal oxide semiconductor (LDMOS) with a buried improved super-junction (BISJ) layer is proposed. A super-junction layer is buried in the drift region and the P pillar is split into two parts with different doping concentrations. Firstly, the buried super-junction layer causes the multiple-direction assisted depletion effect. The drift region doping concentration of the BISJ LDMOS is therefore much higher than that of the conventional LDMOS. Secondly, the buried super-junction layer provides a bulk low on-resistance path. Both of them reduce Ron,sp greatly. Thirdly, the electric field modulation effect of the new electric field peak introduced by the step doped P pillar improves the breakdown voltage (BV). The BISJ LDMOS exhibits a BV of 300 V and Ron,sp of 8.08 mΩ·cm2 which increases BV by 35% and reduces Ron,sp by 60% compared with those of a conventional LDMOS with a drift length of 15 μm, respectively.  相似文献   

3.
A novel voltage-withstand substrate with high-K(HK, k 3.9, k is the relative permittivity) dielectric and low specific on-resistance(Ron,sp) bulk-silicon, high-voltage LDMOS(HKLR LDMOS)is proposed in this paper. The high-K dielectric and highly doped interface N+-layer are made in bulk silicon to reduce the surface field drift region. The high-K dielectric can fully assist in depleting the drift region to increase the drift doping concentration(Nd) and reshape the electric field distribution. The highly doped N+-layer under the high-K dielectric acts as a low resistance path to reduce the Ron,sp. The new device with the high breakdown voltage(BV), the low Ron,sp, and the excellent figure of merit(FOM = BV~2/Ron,sp) is obtained. The BV of HKLR LDMOS is 534 V, Ron,sp is 70.6 m?·cm~2, and FOM is 4.039 MW·cm~(-2).  相似文献   

4.
A new silicon-on-insulator(SOI)power lateral MOSFET with a dual vertical field plate(VFP)in the oxide trench is proposed.The dual VFP modulates the distribution of the electric field in the drift region,which enhances the internal field of the drift region and increases the drift doping concentration of the drift region,resulting in remarkable improvements in breakdown voltage(BV)and specific on-resistance(Ron,sp).The mechanism of the VFP is analyzed and the characteristics of BV and Ron,spare discussed.It is shown that the BV of the proposed device increases from 389 V of the conventional device to 589 V,and the Ron,sp decreases from 366 m·cm2to 110 m·cm2.  相似文献   

5.
A variable-K trenches silicon-on-insulator(SOI) lateral diffused metal–oxide–semiconductor field-effect transistor(MOSFET) with a double conductive channel is proposed based on the enhancement of low dielectric constant media to electric fields. The device features variable-K dielectric double trenches and a P-pillar between the trenches(VK DT-P LDMOS). The low-K dielectric layer on the surface increases electric field of it. Adding a variable-K material introduces a new electric field peak to the drift region, so as to optimize electric field inside the device. Introduction of the highconcentration vertical P-pillar between the two trenches effectively increases doping concentration of the drift region and maintains charge balance inside it. Thereby, breakdown voltage(BV) of the device is increased. The double conductive channels provide two current paths that significantly reduce specific on-resistance(R_(on,sp)). Simulation results demonstrate that a 17-μm-length device can achieve a BV of 554 V and a low on-resistance of 13.12 m?·cm~2. The R_(on,sp) of VK DT-P LDMOS is reduced by 78.9% compared with the conventional structure.  相似文献   

6.
A low specific on-resistance SO1 LDMOS with a novel junction field plate (JFP) is proposed and investigated theo- retically. The most significant feature of the JFP LDMOS is a PP-N junction field plate instead of a metal field plate. The unique structure not only yields charge compensation between the JFP and the drift region, but also modulates the surface electric field. In addition, a trench gate extends to the buffed oxide layer (BOX) and thus widens the vertical conduction area. As a result, the breakdown voltage (BV) is improved and the specific on-resistance (Ron,sp) is decreased significantly. It is demonstrated that the BV of 306 V and the Ron,sp of 7.43 mΩ.cm2 are obtained for the JFP LDMOS. Compared with those of the conventional LDMOS with the same dimensional parameters, the BV is improved by 34.8%, and the Ron,sp is decreased by 56.6% simultaneously. The proposed JFP LDMOS exhibits significant superiority in terms of the trade-off between BV and Ron,sp. The novel JFP technique offers an alternative technique to achieve high blocking voltage and large current capacity for power devices.  相似文献   

7.
张彦辉  魏杰  尹超  谭桥  刘建平  李鹏程  罗小蓉 《中国物理 B》2016,25(2):27306-027306
A uniform doping ultra-thin silicon-on-insulator(SOI) lateral-double-diffused metal-oxide-semiconductor(LDMOS)with low specific on-resistance(R_on,sp) and high breakdown voltage(BV) is proposed and its mechanism is investigated.The proposed LDMOS features an accumulation-mode extended gate(AG) and back-side etching(BE). The extended gate consists of a P– region and two diodes in series. In the on-state with VGD 0, an electron accumulation layer is formed along the drift region surface under the AG. It provides an ultra-low resistance current path along the whole drift region surface and thus the novel device obtains a low temperature distribution. The R_on,sp is nearly independent of the doping concentration of the drift region. In the off-state, the AG not only modulates the surface electric field distribution and improves the BV, but also brings in a charge compensation effect to further reduce the R_on,sp. Moreover, the BE avoids vertical premature breakdown to obtain high BV and allows a uniform doping in the drift region, which avoids the variable lateral doping(VLD) and the "hot-spot" caused by the VLD. Compared with the VLD SOI LDMOS, the proposed device simultaneously reduces the R_on,sp by 70.2% and increases the BV from 776 V to 818 V.  相似文献   

8.
李琦  李海鸥  黄平奖  肖功利  杨年炯 《中国物理 B》2016,25(7):77201-077201
A novel silicon-on-insulator(SOI) high breakdown voltage(BV) power device with interlaced dielectric trenches(IDT) and N/P pillars is proposed. In the studied structure, the drift region is folded by IDT embedded in the active layer,which results in an increase of length of ionization integral remarkably. The crowding phenomenon of electric field in the corner of IDT is relieved by the N/P pillars. Both traits improve two key factors of BV, the ionization integral length and electric field magnitude, and thus BV is significantly enhanced. The electric field in the dielectric layer is enhanced and a major portion of bias is borne by the oxide layer due to the accumulation of inverse charges(holes) at the corner of IDT.The average value of the lateral electric field of the proposed device reaches 60 V/μm with a 10 μm drift length, which increases by 200% in comparison to the conventional SOI LDMOS, resulting in a breakdown voltage of 607 V.  相似文献   

9.
A novel super-junction lateral double-diffused metal-oxide--semiconductor field effect transistor (SJ-LDMOSFET) with n-type step doping buffer layer is proposed. The step doping buffer layer almost completely eliminates the substrate-assisted depletion effect, modulates lateral electric field and achieves nearly uniform surface field. On the other hand, the buffer layer also provides another conductive path and reduces on-state resistance. In short, the proposed LDMOSFET improves trade-off performance between breakdown voltage (B V) and specific on-state resistance Ron,sp. Compared with the conventional SJ-LDMOSFET, the simulation results indicate that the BV of the SSJ-LDMOSFET is increased from saturation voltage 121.7V to 644.9 V; at the same time, the specific on-state resistance is decreased from 0.314 Ω.cm^2 to 0.14 Ω.cm^2 by virtue of 3D numerical simulations using ISE when the drift region length and the step number are taken as 48μm and 3, respectively.  相似文献   

10.
An improved vertical power double-diffused metal–oxide–semiconductor(DMOS) device with a p-region(P1) and high-κ insulator vertical double-diffusion metal–oxide–semiconductor(HKP-VDMOS) is proposed to achieve a better performance on breakdown voltage(BV)/specific on-resistance(Ron,sp) than conventional VDMOS with a high-κ insulator(CHK-VDMOS).The main mechanism is that with the introduction of the P-region,an extra electric field peak is generated in the drift region of HKP-VDMOS to enhance the breakdown voltage.Due to the assisted depletion effect of this p-region,the specific on-resistance of the device could be reduced because of the high doping density of the N-type drift region.Meanwhile,based on the superposition of the depleted charges,a closed-form model for electric field/breakdown voltage is generally derived,which is in good agreement with the simulation result within 10% of error.An HKP-VDMOS device with a breakdown voltage of 600 V,a reduced specific on-resistance of 11.5 m?·cm~2 and a figure of merit(FOM)(BV~2/Ron,sp)of 31.2 MW·cm~(-2) shows a substantial improvement compared with the CHK-VDMOS device.  相似文献   

11.
《中国物理 B》2021,30(6):67305-067305
The key parameters of vertical AlN Schottky barrier diodes(SBDs) with variable drift layer thickness(DLT) and drift layer concentration(DLC) are investigated. The specific on-resistance(R_(on,sp)) decreased to 0.5 m? · cm~2 and the breakdown voltage(V_(BR)) decreased from 3.4 kV to 1.1 kV by changing the DLC from 10~(15) cm~(-3) to 3×10~(16) cm~(-3). The VBRincreases from 1.5 kV to 3.4 kV and the Ron,sp also increases to 12.64 m? · cm~2 by increasing DLT from 4-μm to 11-μm. The VBRenhancement results from the increase of depletion region extension. The Baliga's figure of merit(BFOM) of3.8 GW/cm~2 was obtained in the structure of 11-μm DLT and 10~(16) cm~(-3) DLC without FP. When DLT or DLC is variable,the consideration of the value of BFOM is essential. In this paper, we also present the vertical AlN SBD with a field plate(FP), which decreases the crowding of electric field in electrode edge. All the key parameters were optimized by simulating based on Silvaco-ATLAS.  相似文献   

12.
段宝兴  张波  李肇基 《中国物理》2007,16(12):3754-3759
A new super-junction lateral double diffused MOSFET (LDMOST) structure is designed with n-type charge compensation layer embedded in the p$^{ - }$-substrate near the drain to suppress substrate-assisted depletion effect that results from the compensating charges imbalance between the pillars in the n-type buried layer. A high electric field peak is introduced in the surface by the pn junction between the p$^{ - }$-substrate and n-type buried layer, which given rise to a more uniform surface electric field distribution by modulation effect. The effect of reduced bulk field (REBULF) is introduced to improve the vertical breakdown voltage by reducing the high bulk electric field around the drain. The new structure features high breakdown voltage, low on-resistance and charges balance in the drift region due to n-type buried layer.  相似文献   

13.
《中国物理 B》2021,30(5):57303-057303
A novel super-junction LDMOS with low resistance channel(LRC), named LRC-LDMOS based on the silicon-oninsulator(SOI) technology is proposed. The LRC is highly doped on the surface of the drift region, which can significantly reduce the specific on resistance(Ron,sp) in forward conduction. The charge compensation between the LRC, N-pillar,and P-pillar of the super-junction are adjusted to satisfy the charge balance, which can completely deplete the whole drift,thus the breakdown voltage(BV) is enhanced in reverse blocking. The three-dimensional(3 D) simulation results show that the BV and R_(on,sp) of the device can reach 253 V and 15.5 mΩ·cm~2, respectively, and the Baliga's figure of merit(FOM = BV~2/R_(on,sp)) of 4.1 MW/cm~2 is achieved, breaking through the silicon limit.  相似文献   

14.
罗小蓉  姚国亮  陈曦  王琦  葛瑞  Florin Udrea 《中国物理 B》2011,20(2):28501-028501
A low specific on-resistance (R S,on) silicon-on-insulator (SOI) trench MOSFET (metal-oxide-semiconductor-field-effect-transistor) with a reduced cell pitch is proposed.The lateral MOSFET features multiple trenches:two oxide trenches in the drift region and a trench gate extended to the buried oxide (BOX) (SOI MT MOSFET).Firstly,the oxide trenches increase the average electric field strength along the x direction due to lower permittivity of oxide compared with that of Si;secondly,the oxide trenches cause multiple-directional depletion,which improves the electric field distribution and enhances the reduced surface field (RESURF) effect in the SOI layer.Both of them result in a high breakdown voltage (BV).Thirdly,the oxide trenches cause the drift region to be folded in the vertical direction,leading to a shortened cell pitch and a reduced R S,on.Fourthly,the trench gate extended to the BOX further reduces R S,on,owing to the electron accumulation layer.The BV of the MT MOSFET increases from 309 V for a conventional SOI lateral double diffused metal-oxide semiconductor (LDMOS) to 632 V at the same half cell pitch of 21.5 μm,and R S,on decreases from 419 m · cm 2 to 36.6 m · cm 2.The proposed structure can also help to dramatically reduce the cell pitch at the same breakdown voltage.  相似文献   

15.
A new high voltage trench lateral double-diffused metal-oxide semiconductor (LDMOS) with ultra-low specific onresistance (R on,sp ) is proposed. The structure features a dual gate (DG LDMOS): a planar gate and a trench gate inset in the oxide trench. Firstly, the dual gate can provide a dual conduction channel and reduce R on,sp dramatically. Secondly, the oxide trench in the drift region modulates the electric field distribution and reduces the cell pitch but still can maintain comparable breakdown voltage (BV). Simulation results show that the cell pitch of the DG LDMOS can be reduced by 50% in comparison with that of conventional LDMOS at the equivalent BV; furthermore, R on,sp of the DG LDMOS can be reduced by 67% due to the smaller cell pitch and the dual gate.  相似文献   

16.
A low on-resistance(Ron,sp) integrable silicon-on-insulator(SOI) n-channel lateral double-diffused metal-oxide-semiconductor(LDMOS) is proposed and its mechanism is investigated by simulation.The LDMOS has two features:the integration of a planar gate and an extended trench gate(double gates(DGs));and a buried P-layer in the N-drift region,which forms a triple reduced surface field(RESURF)(TR) structure.The triple RESURF not only modulates the electric field distribution,but also increases N-drift doping,resulting in a reduced specific on-resistance(Ron,sp) and an improved breakdown voltage(BV) in the off-state.The DGs form dual conduction channels and,moreover,the extended trench gate widens the vertical conduction area,both of which further reduce the Ron,sp.The BV and Ron,sp are 328 V and 8.8 m.cm2,respectively,for a DG TR metal-oxide-semiconductor field-effect transistor(MOSFET) by simulation.Compared with a conventional SOI LDMOS,a DG TR MOSFET with the same dimensional device parameters as those of the DG TR MOSFET reduces Ron,sp by 59% and increases BV by 6%.The extended trench gate synchronously acts as an isolation trench between the high-voltage device and low-voltage circuitry in a high-voltage integrated circuit,thereby saving the chip area and simplifying the fabrication processes.  相似文献   

17.
A novel low specific on-resistance(R on,sp) silicon-on-insulator(SOI) p-channel lateral double-diffused metal-oxide semiconductor(pLDMOS) compatible with high voltage(HV) n-channel LDMOS(nLDMOS) is proposed.The pLDMOS is built in the N-type SOI layer with a buried P-type layer acting as a current conduction path in the on-state(BP SOI pLDMOS).Its superior compatibility with the HV nLDMOS and low voltage(LV) complementary metal-oxide semiconductor(CMOS) circuitry which are formed on the N-SOI layer can be obtained.In the off-state the P-buried layer built in the NSOI layer causes multiple depletion and electric field reshaping,leading to an enhanced(reduced) surface field(RESURF) effect.The proposed BP SOI pLDMOS achieves not only an improved breakdown voltage(BV) but also a significantly reduced Ron,sp.The BV of the BP SOI pLDMOS increases to 319 V from 215 V of the conventional SOI pLDMOS at the same half cell pitch of 25 μm,and R on,sp decreases from 157 mΩ·cm2 to 55 mΩ·cm2.Compared with the PW SOI pLDMOS,the BP SOI pLDMOS also reduces the R on,sp by 34% with almost the same BV.  相似文献   

18.
乔明  庄翔  吴丽娟  章文通  温恒娟  张波  李肇基 《中国物理 B》2012,21(10):108502-108502
Based on the theoretical and experimental investigation of a thin silicon layer(TSL) with linear variable doping(LVD) and further research on the TSL LVD with a multiple step field plate(MSFP),a breakdown voltage(BV) model is proposed and experimentally verified in this paper.With the two-dimensional Poisson equation of the silicon on insulator(SOI) device,the lateral electric field in drift region of the thin silicon layer is assumed to be constant.For the SOI device with LVD in the thin silicon layer,the dependence of the BV on impurity concentration under the drain is investigated by an enhanced dielectric layer field(ENDIF),from which the reduced surface field(RESURF) condition is deduced.The drain in the centre of the device has a good self-isolation effect,but the problem of the high voltage interconnection(HVI) line will become serious.The two step field plates including the source field plate and gate field plate can be adopted to shield the HVI adverse effect on the device.Based on this model,the TSL LVD SOI n-channel lateral double-diffused MOSFET(nLDMOS) with MSFP is realized.The experimental breakdown voltage(BV) and specific on-resistance(R on,sp) of the TSL LVD SOI device are 694 V and 21.3 ·mm 2 with a drift region length of 60 μm,buried oxide layer of 3 μm,and silicon layer of 0.15 μm,respectively.  相似文献   

19.
吴丽娟  胡盛东  张波  李肇基 《中国物理 B》2011,20(2):27101-027101
This paper presents a novel high-voltage lateral double diffused metal--oxide semiconductor (LDMOS) with self-adaptive interface charge (SAC) layer and its physical model of the vertical interface electric field. The SAC can be self-adaptive to collect high concentration dynamic inversion holes, which effectively enhance the electric field of dielectric buried layer (EI) and increase breakdown voltage (BV). The BV and EI of SAC LDMOS increase to 612 V and 600 V/μm from 204 V and 90.7 V/μm of the conventional silicon-on-insulator, respectively. Moreover, enhancement factors of η which present the enhanced ability of interface charge on EI are defined and analysed.  相似文献   

20.
This paper presents a novel high-voltage lateral double diffused metal-oxide semiconductor (LDMOS) with self- adaptive interface charge (SAC) layer and its physical model of the vertical interface electric field. The SAC can be self-adaptive to collect high concentration dynamic inversion holes, which effectively enhance the electric field of dielectric buried layer (EI) and increase breakdown voltage (BV). The BV and EI of SAC LDMOS increase to 612 V and 600 V/tim from 204 V and 90.7 V/ttm of the conventional silicon-on-insulator, respectively. Moreover, enhancement factors of r/which present the enhanced ability of interface charge on EI are defined and analysed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号