首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A safety‐catch cysteine protecting group, S‐4,4′‐dimethylsulfinylbenzhydryl (Msbh), was designed and developed to expand the capabilities of synthetic strategies for the regioselective formation of disulfide bonds in cysteine‐rich peptides. The directed regioselective synthesis of human hepcidin, which contains four disulfide bonds, was undertaken and led to a high‐resolution NMR structure under more physiologically relevant conditions than previously. Conversely, hepcidin synthesized with the formerly assigned vicinal disulfide‐bond connectivity displayed significant conformational heterogeneity under similar conditions. The two synthetic forms of human hepcidin induced ferroportin internalization with apparent EC50 values of 2.0 (native fold, 1 ) and 4.4 nM (non‐native fold, 2 ), with 2 undergoing isomerization to 1 in the presence of ferroportin expressing cells.  相似文献   

2.
Hepcidin in iron metabolism   总被引:5,自引:0,他引:5  
Hepcidin, which has been recently identified both by biochemical and genomic approaches, is a 25 amino acid polypeptide synthesized mainly by hepatocytes and secreted into the plasma. Besides its potential activity in antimicrobial defense, hepcidin plays a major role in iron metabolism. It controls two key steps of iron bioavailability, likely through a hormonal action: digestive iron absorption by enterocytes and iron recycling by macrophages. In humans, this could explain that low levels of hepcidin found during juvenile haemochromatosis and HFE-1 genetic haemochromatosis are associated with an iron overload phenotype. Conversely, an increase of hepcidin expression is suspected to play a major role in the development of anemia of chronic inflammatory diseases. However, the regulatory mechanisms of hepcidin expression are multiple, including iron-related parameters, anemia, hypoxia, inflammation and hepatocyte function. Therefore, many physiological and pathological situations may modulate hepcidin expression and subsequently iron metabolism. A better knowledge of the biological effects of hepcidin and of its expression regulatory mechanisms will clarify the place of hepcidin in the diagnosis and treatment of iron-related diseases.  相似文献   

3.
4.
Hepcidin-25 has been defined as the key biomarker in iron metabolism. This peptide binds to the iron transporter ferroportin to cause its degradation. Therefore, the need for specific, accurate and precise methods for the quantification of hepcidin-25 in biological fluids is dramatically increasing. In this regard, the use of rapid immunochemical methods that provide low limit of quantification is desired for routine clinical use. However, such fast methodologies should be first analytically evaluated and compared with alternative strategies to check for their advantages and limitations. Here we compare the use of a commercial immunochemical assay for hepcidin determination with a novel analytical approach based on Cu-labeling of the peptide followed by Cu determination using liquid chromatography (HPLC) and plasma mass spectrometry (ICP-MS). The figures of merit of both systems reveal similar analytical characteristics and both seem to be adequate for the determination of the peptide at biologically relevant concentrations in human serum samples. The analysis of a larger number of samples (n = 50) by both techniques showed a good agreement in the concentrations found. Such finding permits to address the hepcidin recovery in the sample preparation procedure necessary for the HPLC-ICP-MS analysis in human serum that turn out to be 76–85%. Additionally, limitations due to cross-reactivity issues of the ELISA method could be addressed in some of the samples by using LC-ICP-MS and were confirmed by LC-Electrospray-MS.  相似文献   

5.
The protein HFE (homeostatic iron regulator) is a key regulator of iron metabolism, and mutations in HFE underlie the most frequent form of hereditary haemochromatosis (HH-type I). Studies have shown that HFE interacts with transferrin receptor 1 (TFR1), a homodimeric type II transmembrane glycoprotein that is responsible for the cellular uptake of iron via iron-loaded transferrin (holo-transferrin) binding. It has been hypothesised that the HFE/TFR1 interaction serves as a sensor to the level of iron-loaded transferrin in circulation by means of a competition mechanism between HFE and iron-loaded transferrin association with TFR1. To investigate this, a series of peptides based on the helical binding interface between HFE and TFR1 were generated and shown to significantly interfere with the HFE/TFR1 interaction in an in vitro proximity ligation assay. The helical conformation of one of these peptides, corresponding to the α1 and α2 helices of HFE, was stabilised by the introduction of sidechain lactam “staples”, but this did not result in an increase in the ability of the peptide to disrupt the HFE/TFR1 interaction. These peptides inhibitors of the protein–protein interaction between HFE and TFR1 are potentially useful tools for the analysis of the functional role of HFE in the regulation of hepcidin expression.  相似文献   

6.
Hepcidin is a peptide hormone that functions as a key regulator of mammalian iron metabolism. Biological levels are increased in end‐stage renal disease and during inflammation but suppressed in hemochromatosis. Thus hepcidin levels have diagnostic importance. This study describes the development of an analytical method for the quantitative determination of the concentration of hepcidin in clinical samples. The fragmentation of hepcidin was investigated using triple quadrupole and linear ion trap mass spectrometers. A standard quantity of a stable isotopically labelled hepcidin internal standard was added to serum samples. Extraction was performed by protein precipitation and weak cation‐exchange magnetic nanoparticles. Chromatography was carried out on sub 2 µm particle stationary phase, using ultra‐high‐pressure liquid chromatography and a linear ion trap for quantitation. The lower limit of quantitation was 0.4 nmol/L with less than 20% accuracy and precision. The mean hepcidin concentration in sera for controls was 4.6 ± 2.7 nmol/L, in patients with sickle cell disease, 7.0 ± 8.9 nmol/L; in patients with end‐stage renal disease, 30.5 ± 15.7 nmol/L; and patients with penetrant hereditary hemochromatosis, 1.4 ± 0.8 nmol/L. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.

Abstract  

Enormous advances have been made in the last decade in understanding iron metabolism and iron homeostasis at both the cellular and the systemic level. This includes the identification of genes and proteins involved in iron transport, such as the ferric reductase DcytB, the proton-coupled ferrous (divalent) iron transporter DMT1, the iron exporter ferroportin and the membrane-bound ferroxidase hephaestin. The modulation of their translation by the iron regulatory protein (IRP) system has also been identified together with the impressive signalling cascades involved in regulating the chef d’orchestre of systemic iron homeostasis, hepcidin. However, exactly how the brain regulates fluxes and storage of iron between neurons, oligodendrocytes, astrocytes and microglial cells remains an enigma. In this review we discuss the possible mechanisms which may be involved in the transfer of iron across the blood–brain barrier, together with the possible role played by astrocytes. The consequences of iron deficiency and iron excess on brain function are described. Finally, various neurodegenerative diseases, where accumulation of iron may be important in the pathogenesis, are presented as well as the possible use of iron chelators to diminish disease progression.  相似文献   

8.
Hepcidin is known to be a key systemic iron‐regulatory hormone which has been demonstrated to be associated with a number of iron disorders. Hepcidin concentrations are increased in inflammation and suppressed in hemochromatosis. In view of the role of hepcidin in disease, its potential as a diagnostic tool in a clinical setting is evident. This study describes the development of a matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) assay for the quantitative determination of hepcidin concentrations in clinical samples. A stable isotope labeled hepcidin was prepared as an internal standard and a standard quantity was added to urine samples. Extraction was performed with weak cation‐exchange magnetic nanoparticles. The basic peptides were eluted from the magnetic nanoparticles using a matrix solution directly onto a target plate and analyzed by MALDI‐TOF MS to determine the concentration of hepcidin. The assay was validated in charcoal stripped urine, and good recovery (70–80%) was obtained, as were limit of quantitation data (5 nmol/L), accuracy (RE <10%), precision (CV <21%), within ‐day repeatability (CV <13%) and between‐day repeatability (CV <21%). Urine hepcidin levels were 10 nmol/mmol creatinine in healthy controls, with reduced levels in hereditary hemochromatosis (P < 0.000005) and elevated levels in inflammation (P < 0.0007). In summary a validated method has been developed for the determination of hepcidin concentrations in clinical samples. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
The crystal structure of a novel ferrocene derivative with potential flame-retardant/smoke-suppressant activity, 1,4,5,6,7,7-hexachloro-2-endo-ferrocenyl-hydroxymethyl-3-endo-hydroxymethyl-5-norbornene, has been determined. Some of the carbon–carbon bonds within the chlorendic residue are unusually long, and there is no interaction between the hydroxyl groups and the iron atom. There is evidence of intramolecular hydrogen bonding between the two hydroxyl groups.  相似文献   

10.
11.
12.
We report the results of density functional theory (DFT) calculations of ethylene adsorption over the most stable pure and bimetallic clusters of Fe(n)Cu(m) (2 ≤ m+n ≤ 4), in two adsorption modes of π and di-σ. Our results show that the quality of interaction of ethylene with iron center in bimetallic clusters of iron-copper is characteristically different from what is found over pure iron. Over the range of our studies for dimers, trimers, and tetramers, whether for π or di-σ mode, alloying iron clusters results in a substantial improvement in adsorption of ethylene over cluster and exhibits a notable increase in binding and interaction energies compared with pure iron clusters. One of the interesting features of this adsorption is that ethylene never orients toward di-σ mode for Cu-Cu or Fe-Cu bonds, and π orientation is strongly preferred. Ethylene adsorption in di-σ coordination is accompanied by the sever restructuring, larger deformation energy, and the larger interaction energy. In the next part, we answer this question of how electronic perturbations induced by copper atoms can enhance the activity of iron toward ethylene. This interpretation is done within the framework of natural bond orbital (NBO) and natural resonance theory (NRT) analyses. Different reaction pathways detected by NRT analysis (donor-acceptor, metallacyclic, and carbanion) reveal interesting aspects of differences between the nature of metal-alkene coordination in bimetallic and purely metallic clusters.  相似文献   

13.
Potential applications of ionic liquids depend on the properties of this class of liquid material. To a large extent the structure and properties of these Coulomb systems are determined by the intermolecular interactions among anions and cations. In particular the subtle balance between Coulomb forces, hydrogen bonds and dispersion forces is of great importance for the understanding of ionic liquids. The purpose of the present paper is to answer three questions: Do hydrogen bonds exist in these Coulomb fluids? To what extent do hydrogen bonds contribute to the overall interaction between anions and cations? And finally, are hydrogen bonds important for the physical properties of ionic liquids? All these questions are addressed by using a suitable combination of experimental and theoretical methods including newly synthesized imidazolium-based ionic liquids, far infrared spectroscopy, terahertz spectroscopy, DFT calculations, differential scanning calorimetry (DSC), viscometry and quartz-crystal-microbalance measurements. The key statement is that although ionic liquids consist solely of anions and cations and Coulomb forces are the dominating interaction, local and directional interaction such as hydrogen bonding has significant influence on the structure and properties of ionic liquids. This is demonstrated for the case of melting points, viscosities and enthalpies of vaporization. As a consequence, a variety of important properties can be tuned towards a larger working temperature range, finally expanding the range of potential applications.  相似文献   

14.
Short-range structure and formation of amorphous aggregates of iron inositol hexaphosphate (iron phytate) were studied by broadline solid-state 31P NMR and Fe X-ray absorption spectroscopy. It was shown that bonds P-O-Fe with strong covalent character exist in solid substances. Iron in these substances is octahedrally coordinated by six oxygen atoms and further monodentatly bonded to three or four phosphorus atoms. In this way, iron generates -P-O-Fe-O-P- intermolecular connections. An insight into the formation of the network was obtained by studying structural changes in iron phytates with increasing concentrations of iron. It was shown that the solid network builds when at least four out of six phosphate groups per one phytic molecule bond to iron atoms and thus participate in the intermolecular connections. This leads to iron phytate with approximately two iron atoms per one molecule of phytate. When the concentration of iron in aggregates increases, the number of P-O-Fe bonds, and thus the number of phosphate groups that are bonded to iron, increases. Solid iron phytate with approximately four iron atoms per one molecule of phytate is almost saturated with iron. Its short-range structural properties can be explained well by a structure that is approaching an idealized model, in which each phosphate group is bonded to two iron atoms and each iron atom is bonded to three phosphorus atoms and is shared between two phytic molecules.  相似文献   

15.
含铁蛋白介导的铁转运分子机制   总被引:2,自引:0,他引:2  
孙雪松  何庆瑜 《化学进展》2007,19(12):1986-1990
铁是生命体必需的微量元素,因为它是一些重要功能酶的协同因子。这些功能酶有着广泛的功能,从呼吸作用到核酸的复制。但是,当铁含量多于细胞稳态的时候,它将产生对机体有毒的羟基。生物体已经发展了自身的调控机制,包括铁的摄取,存储和输出来控制细胞内的铁处于平衡态。二价阳离子转运蛋白,铁输出蛋白和hephaestin参与小肠吸收,转铁蛋白和转铁蛋白受体参与铁的摄取和转运,铁蛋白可以存储铁,铁调控蛋白的功能是调节铁代谢。这篇文章综述着重阐述了含铁蛋白介导的铁传递机制。  相似文献   

16.
A series of 1,2,4‐trioxanes were synthesized in which the key peroxy bonds were installed through a molybdenum‐catalyzed perhydrolysis of the epoxy rings. A core structure was identified that may serve as a promising lead structure for further investigations because of its high antimalarial activity (comparable to that of artesunate and chloroquine), apparent potential for scale‐up and derivatization, and facile monitoring/tracing by using UV light.  相似文献   

17.
A method for the resolution of a peptides mixture including hepcidin‐25, an iron metabolism marker, was developed by CE‐ESI‐MS. Several strategies were tested to optimize peptide separation, such as the addition of cyclodextrins or organic solvents in the BGE or the use of coated capillaries. Best results in terms of resolution, symmetry and efficiency were obtained with a BGE made of 500 mM ammonium acetate pH 4.5/ACN 70:30 v/v. Using the methodology of experimental design, BGE concentration, sheath liquid composition and MS‐coupling parameters were then optimized in order to obtain the best signal intensity for hepcidin. Finally, a 225 mM BGE and a sheath liquid composed of isopropanol/water 80:20 v/v containing 0.5% v/v formic acid were selected as it constitutes the best compromise for selectivity, peak shape and sensitivity.  相似文献   

18.
Microfluidic LC systems present undeniable advantages over classical LC in terms of sensitivity. Hepcidin, a peptide marker of clinical disorders linked to iron metabolism, was used as model to demonstrate peptide quantification potentialities of LC-chip coupled to a nanoelectrospray source ion trap mass spectrometer in an aqueous sample. First, stable isotope labelled hepcidin was chosen as internal standard and gradient as well as sample compositions were optimised using design of experiments as development tool. The method was then prevalidated using accuracy profiles in order to select the most appropriate response function and to confirm the ability of the technique to quantify low hepcidin concentration. A reliable and very sensitive quantitation method was finally obtained using this integrated microfluidic technology. Indeed, good results with respect to accuracy, trueness and precision were achieved, as well as a very low limit of quantitation (0.07 ng/ml). Method suitability of nano-LC on chip tandem mass spectrometry for hepcidin quantitation was also demonstrated in complex media such as human plasma.  相似文献   

19.
20.
The electronic structure of iron‐oxo porphyrin π‐cation radical complex Por·+FeIV?O (S? H) has been studied for doublet and quartet electronic states by means of two methods of the quantum chemical topology analysis: electron localization function (ELF) η(r) and electron density ρ(r). The formation of this complex leads to essential perturbation of the topological structure of the carbon–carbon bonds in porphyrin moiety. The double C?C bonds in the pyrrole anion subunits, represented by pair of bonding disynaptic basins Vi=1,2(C,C) in isolated porphyrin, are replaced by single attractor V(C,C)i=1–20 after complexation with the Fe cation. The iron–nitrogen bonds are covalent dative bonds, N→Fe, described by the disynaptic bonding basins V(Fe,N)i=1–4, where electron density is almost formed by the lone pairs of the N atoms. The nature of the iron–oxygen bond predicted by the ELF topological analysis, shows a main contribution of the electrostatic interaction, Feδ+···Oδ?, as long as no attractors between the C(Fe) and C(O) core basins were found, although there are common surfaces between the iron and oxygen basines and coupling between iron and oxygen lone pairs, that could be interpreted as a charge‐shift bond. The Fe? S bond, characterized by the disynaptic bonding basin V(Fe,S), is partially a dative bond with the lone pair donated from sulfur atom. The change of electronic state from the doublet (M = 2) to quartet (M = 4) leads to reorganization of spin polarization, which is observed only for the porphyrin skeleton (?0.43e to 0.50e) and S? H bond (?0.55e to 0.52e). © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号