首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
应用电化学伏安法和表面增强拉曼光谱(SERS)研究在-1.0 V~0 V电位区间内胞嘧啶于粗糙金电极表面的吸附行为.结果表明,在本实验的电位区间,胞嘧啶是以其N3位垂直吸附在粗糙金电极表面的.在负电位区间环呼吸振动模的强度出现极大值,与其它振动模强度相比,作者认为电磁场的增强和电荷转移均使该谱峰的拉曼信号增强.胞嘧啶的环呼吸振动频率随着电位负移而红移,这意味着它与金电极的成键作用减弱.同时也表明SERS谱可用于研究生物分子在金属电极表面的吸附行为.  相似文献   

2.
采用电化学现场表面增强拉曼光谱(SERS)研究了非水体系中苯并三唑(BTAH)在铜电极上的吸附及成膜行为, 结果表明非水体系中BTAH的吸附行为随电位变化而不同. 较负电位区间主要以中性分子形式吸附; 中间电位区间主要以BTA吸附并不可逆成膜; 而在氧化电位区间主要表现为铜的氧化. 随中性配体三苯基膦(pph3)的加入, 在中间电位区间, 由于易溶的Cu(pph3)n+的生成而使铜的溶解速度加快, 最终该阳离子在溶液中和BTA-作用而生成了多核铜的配合物. 采用直接电化学方法模拟电极表面过程合成了相应的吸附产物, 并对其组成进行了相关表征.  相似文献   

3.
利用电化学现场表面增强拉曼光谱技术(SERS)研究了咪唑在锌表面的成膜和缓蚀行为, 讨论了电位和pH值对咪唑分子和金属表面作用的影响. 锌电极上的表面拉曼光谱研究结果表明, 中性溶液中咪唑对锌的缓蚀作用明显, 它通过氮端垂直吸附在锌表面, 从而阻止锌的腐蚀, 其吸附取向不随电位的变化而改变; 在碱性溶液中咪唑和锌的作用较弱, 而且电位变化可以使其吸附取向发生改变, 在较正电位下咪唑以氮端垂直吸附, 在较负电位下以咪唑环倾斜吸附.  相似文献   

4.
应用现场表面增强拉曼光谱和衰减全反射表面增强红外光谱初步研究了0.1mol·L-1HClO4溶液中Pt电极表面铁原卟啉(FePP)自组装单层的电化学和结构特性.以514nm波长为激发线,得到了增强因子约为40的粗糙Pt电极上FePP在不同电位下的表面增强拉曼光谱.分析0.5~-0.3V(SCE)区间内谱峰变化,得到近似的吸附等温式,由此可估算出Fe3+/Fe2+的式量电位大约为-0.2V.原位表面增强红外光谱的测试结果表明,FePP分子主要以斜立方式吸附在Pt膜电极表面,其中一个环外羧酸根与电极表面相接触,而另一羧酸基团以氢键与相邻的FePP分子相连.这样的吸附结构在-0.1~0.9V(SCE)的电位区间内并没有显著的变化.  相似文献   

5.
利用电化学和表面增强拉曼光谱方法研究了咪唑和钴电极的相互作用. 分析并指认了不同电极电位下咪唑溶液中钴电极上的表面增强拉曼光谱(SERS), 发现随电极电位的变化, 在钴电极表面存在三种表面物种并且可以在一定程度上相互转化. 在较负电位(−1.2~−0.9 V)区间, 咪唑在钴电极表面以吸附物种为主, 随电位正移, 吸附取向由通过吡啶N垂直吸附逐渐向C2=N3双键倾斜; 在较正电位区间(−0.8~−0.7 V)内, 吸附咪唑的信号逐渐减弱乃至消失, 而钴和咪唑的络合物信号逐渐增强; 开路电位(−0.6 V)下出现很强的钴的氧化物谱峰. 同时, 文中比较了钴电极表面在空白溶液和加入咪唑后的溶液中的极化曲线, 发现咪唑对钴电极的缓蚀作用较为明显. 该研究结果表明, 联合表面增强拉曼光谱技术和电化学方法使得人们可以从分子水平上了解表面物种和电极表面间复杂的相互作用.  相似文献   

6.
基于壳层隔绝纳米粒子增强拉曼光谱技术,合成了Au@SiO2纳米粒子,并对其进行了相关表征. 结果表明,包裹的二氧化硅层连续、致密,Au@SiO2膜/Ti电极上可获得金属钛电极上吸附吡啶分子的高质量表面增强拉曼光谱(SERS)信号. 通过Pt、Ni电极的测试,证实该信号源于吸附在基底表面的吡啶分子. 此外,Au@SiO2膜/Ti电极上吸附吡啶分子的现场SERS光谱研究表明,在-0.1 V ~ -0.6 V电位区间,吡啶分子平躺吸附,从-0.6 V起吸附的吡啶分子由平躺逐转变为垂直,而当电位为-1.2 V时,电极表面析氢,吡啶脱附.  相似文献   

7.
应用电化学现场表面增强拉曼光谱(SERS)以及直接电化学合成技术分别研究了非水体系中苯并咪唑及2-巯基苯并咪唑在铜电极表面的吸附行为及其与三苯基膦(pph3)共存的表面过程.在较负电位区间苯并咪唑主要以分子形式吸附在电极表面.在较正电位区间,电极表面生成类高分子(CuBIM)n膜,具有缓蚀作用,对含有pph3的该体系,Cu+首先与pph3配位形成稳定的阳离子,进入溶液之后与BIM配位生成稳定的配合物,导致不能在表面有效地成膜而破坏了苯并咪唑的缓蚀作用.2-巯基苯并咪唑在Cu表面主要通过自组装单层方式在电极表面吸附,且在实验测试的电位区间内,MBI均是以S端与金属表面作用,其吸附取向随电位正移由倾斜逐渐向接近垂直过渡,并在金属表面形成MBI单分子层膜.pph3的加入不影响MBI在Cu电极表面的成膜行为.电化学现场模拟合成及产物结构组成解析为推断表面反应过程提供了直接证据.  相似文献   

8.
杨海峰  封婕  王桂华  章宗穰 《化学学报》2004,62(20):2007-2009,F006
利用共焦激光拉曼系统,原位测定了电位扫描过程中NAD^ 分子在银电极上的表面增强拉曼光谱的变化.通过分析0.4→-0.2→-0.4V电位区间的拉曼光谱的变化,推断由于NAD^ 分子中存在着具有空间旋转自由度的磷酸二酯键,分子中腺嘌呤和烟酰胺两结构单元在银电极上的吸附构型都随电位变化而发生改变.  相似文献   

9.
生物活性分子的拉曼光谱电化学研究(英文)   总被引:3,自引:0,他引:3  
本文概述了采用电化学现场拉曼光谱技术研究氧化物歧化酶在L 半胱氨酸修饰金电极表面的电子迁移反应以及腺嘌呤共存条件下超氧化物歧化酶在金电极表面的电子迁移反应和不同电位下银电极表面烟酰胺腺嘌呤二核苷酸的吸附等体系的反应吸附特性 .所得结果对于分析和研究生物活性分子电化学过程机理具有重要意义 .  相似文献   

10.
采用原位电化学表面增强拉曼光谱(EC-SERS)研究了硫代水杨酸(TSA)吸附在活性Au电极表面的自组装单分子层(SAMs).TSA在活性Au表面的化学吸附及不同酸碱度下的TSA浸饰单层膜的SERS光谱,表明随pH值的增加,峰强呈现2个不同的下降阶段.通过EC-SERS考察不同电富集时间和电位的影响,显示在酸性介质和0.7 V及70 s富集时间下,可以获得最大EC-SERS信号,并随着电位负移,信号逐渐减弱,直至基本消失,表明TSA分子在Au表面排布状态会随外加条件的改变而发生变化.通过计算TSA在不同pH值下的分布分数以及探针分子在不同电位下的增强因子(EF),结合SERS和EC-SERS的变化走势对比,得出TSA在活性Au表面自组装形成单分子层/膜的机理,指出由于TSA不同的电化学吸附取向,以及高负电位下的还原/脱附作用,使得Au表面拉曼活性降低,造成EF显著减小,不可逆地失去了SERS的活性.  相似文献   

11.
The synthesis, reactivity, and potential of well‐defined dinuclear gold complexes as precursors for dual gold catalysis are explored. Using the preorganizing abilities of the ditopic PNHPiPr ( LH ) ligand, dinuclear AuI–AuI complex 1 and mixed‐valent AuI–AuIII complex 2 provide access to structurally characterized chlorido‐bridged cationic species 3 and 4 upon halide abstraction. For 2 , this transformation involves unprecedented two‐electron oxidation of the redox‐active ligand, generating a highly rigidified environment for the Au2 core. Facile reaction with phenylacetylene affords the σ,π‐activated phenylacetylide complex 5 . When applied in the dual gold heterocycloaddition of a urea‐functionalized alkyne, well‐defined precatalyst 3 provides high regioselectivities for the anti‐Markovnikov product, even at low catalyst loadings, and outperforms common mononuclear AuI systems. This proof‐of‐concept demonstrates the benefit of preorganization of two gold centers to enforce selective non‐classical σ,π‐activation with bifunctional substrates.  相似文献   

12.
Synthesis of substituted phenylacetylide ligands 2,6-bis(trimethylsilyl)phenylacetylene (H1) and 2-(triphenylsilyl)phenylacteylene (H2) is reported. Ligand 1 supports tetrahedral complexes of V(III), Fe(II), and Mn(II) (3-5). Complexes 3-5 are high-spin and redox active.  相似文献   

13.
A procedure has been proposed for the synthesis of tertiary acetylenic alcohols and diols by treatment of phenylacetylene or 2-methyl-3-butyn-2-ol with butyllithium and subsequent reaction of lithium phenylacetylide or lithium 4-lithio-2-methyl-3-butyn-2-olate thus obtained with alicyclic, aromatic, and terpene ketones.  相似文献   

14.
Gold nanoparticles (2–10 nm) supported on γ-Al2O3 exhibit high activity and stability in the hydrogenation of phenylacetylene into styrene in the phenylacetylene-styrene mixture. The selectivity of the catalyst is particle size-dependent: the styrene-to-ethylbenzene molar ratio in the reaction products increases from 2 to 30 as the average gold particle size decreases from 8 to 2.5 nm. The selectivity of phenylacetylene hydrogenation correlates with the selectivity of phenylacetylene adsorption on Au/γ-Al2O3 from the phenylacetylene-styrene mixture.  相似文献   

15.
1-Morpholino-1-(phenylethynyl)cyclopentane and 1-morpholino-1-(phenylethynyl)cyclohexane were obtained by reactions of enamines, derivatives of cyclic ketones, with phenylacetylene in the presence of CuI. A scheme for catalysis by Cu(I) compounds with the intermediate formation of copper phenylacetylide and iminium salts was suggested.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 169–170, January, 1994.  相似文献   

16.
Direct adsorption of phenylacetylene on clean silicon surface Si(100)-2 x 1 is studied in ultrahigh vacuum (UHV). The combination of scanning tunnel microscopy (STM) and surface differential reflectance spectroscopy (SDRS) with Monte Carlo calculations are put together to draw a realistic kinetic model of the evolution of the surface coverage as a function of the molecular exposure. STM images of weakly covered surfaces provide evidence of two very distinct adsorption geometries for phenylacetylene, with slightly different initial sticking probabilities. One configuration is detected with STM as a bright spot that occupies two dangling bonds of a single dimer, whereas the other configuration occupies three dangling bonds of adjacent dimers. These data are used to implement a Monte Carlo model which further serves to design an accurate kinetic model. The resulting evolution toward saturation is compared to the optical data from surface differential reflectance spectroscopy (SDRS). SDRS is an in situ technique that monitors the exact proportion of affected adsorption sites and therefore gives access to the surface coverage which is evaluated at 0.65. We investigate the effect of surface temperature on this adsorption mechanism and show that it has no major effect either on kinetics or on structure, unless it passes the threshold of dissociation measured at ca. 200 degrees C. This offers a comprehensive image of the whole adsorption process of phenylacetylene from initial up to complete saturation.  相似文献   

17.
Here, we report on a new aspect of the adsorption of Br- on the surface of gold. The adsorption of dodecyltrimethylammonium bromide (C12TABr) from aqueous solutions onto macroporous gold particles was studied by continuous flow frontal analysis solid/liquid chromatography and flow adsorption microcalorimetry. The material balance and enthalpy balance of adsorption and the change in the solution pH were measured simultaneously. Initially, Br- is irreversibly bound to high-affinity surface sites counterbalanced by the adsorption of H+ from the aqueous phase. The surface speciation is accompanied by the formation of C12TAOH, which in turn results in a significant pH increase in the bulk solution. The net process was found to be strongly exothermic (-280 kJ.mol(-1)), which is indicative of the occurrence of chemisorption. The specific adsorption of Br- is followed by the reversible adsorption of C12TABr to produce a firmly bound monolayer in a head-to-surface arrangement (-53 kJ.mol(-1)). In a relatively narrow range of the surface coverage, various composite structures may develop on the top layer and eventually transform to full-cylindrical surface aggregates. The surface aggregation was found to be reversible, with an enthalpy change of -11 kJ.mol(-1). The importance of the specific binding of Br- to the surface of gold was confirmed by measurement of the initial adsorption of NaBr on the microparticles. The initial adsorption was found to be irreversible, with an enthalpy change of approximately -240 kJ.mol(-1). This process involved the formation of an AuBr-/H+ electric double layer at the gold/water interface, accompanied by a dramatic increase in the solution pH due to the release of a copious amount of OH- in the bulk liquid phase.  相似文献   

18.
Using an optical reflectometer with impinging-jet system, the adsorption from aqueous solution onto gold of three charged macromolecules has been studied: the strong linear-chain polyelectrolyte polyvinyl pyridine (PVP(+)), the fifth-generation poly(propylene imine) dendrimer DAB-64, which has a pH-dependent charge and a relatively fixed shape, and the protein lysozyme, of which both the charge and the structure-stability are dependent on solution composition. Experimental conditions that have been varied include the adsorbate concentration, electrolyte concentration, pH, and externally applied potential across the gold/solution interface. Making use of the earlier established dependency of the double layer potential of the gold substrate on solution conditions and externally applied potential, the results of measurements as a function of pH and as a function of external potential control are compared. The total set of results enables us to draw conclusions with respect to the relative importance of electrostatic interactions for the adsorption process. PVP(+) adsorption follows the electric potential of the gold/solution interface and is further determined by a rather strong nonelectrostatic affinity between segments and surface. The adsorption behavior of DAB-64 is not quite understood, but electrostatic interactions with the gold surface seem to play a minor role. For lysozyme, surface-induced conformational changes dominate the adsorption process. The extent of spreading of the molecules decreases with increasing polarity of the surface, resulting in a minimum in adsorbed amount around the point of zero potential of the gold.  相似文献   

19.
The effects of surface stress and mass loading upon the adsorption of polyelectrolytes onto flexible silicon micromechanical cantilever sensors (MCSs) were studied in situ. A self-assembled monolayer of 2-mercaptoethylamine chloride (2-MEA) on gold was used to achieve single-side adsorption on the MCS. Such a preparation gave a positive surface potential, whereas a bare SiOx surface gave a negative surface potential. Wide scan X-ray photoelectron spectroscopy confirmed that the adsorption of polystyrenesulfonate (PSS) and polyallylamine hydrochloride (PAH) followed the general rule expected from the electrostatic interaction between the substrate and the polyelectrolyte, whereas the adsorption polyethyleneimine (PEI) did not. The adsorption of PAH on SiO(x) from a 3 mM water solution containing 1 M NaCl was associated with a deflection of the MCS toward the polyelectrolyte monolayer (tensile surface stress) owing to the hydrogen bonding between neighboring amino groups. Here, a surface stress change of 1.4 +/- 0.1 N/m was estimated. The adsorption of PSS from a 3 mM water solution containing 1 M NaCl on a 2-MEA surface induced a deflection of the MCS away from the polyelectrolyte layer (compressive stress), toward the SiO(x) side. Here, a surface stress change of 3.1 +/- 0.3 N/m was determined. The formation of a PAH layer on top of the PSS layer resulted in a deflection of the MCS toward the PAH layer. This indicated that the adjacent PSS layer was deswelling, corresponding to a surface stress change of 0.5 +/- 0.1 N/m.  相似文献   

20.
The adsorption-desorption behavior of poly(vinyl imidazole), a weak polybase (pH-dependent positive charge), on a gold electrode was investigated using optical fixed-angle reflectometry. Using an instrument comprising an impinging-jet system, the hydrodynamic conditions were well defined, making it possible to study the adsorption rate. Comparison between the actual adsorption rate and that of a purely diffusion-controlled process revealed the occurrence and the change of an electrostatic barrier in the adsorption process. The surface charge of the gold electrode was varied by means of an externally applied potential. The surface charge density was evaluated by separate electrochemical impedance spectroscopy. The uptake and the adsorption rate were very sensitive to pH and electrode polarization. At pH 3, the adsorption of the fully charged polymer increased fairly regularly with cathodic polarization, whereas it remained at about 0.4 mg m(-2) in the anodic zone At pH 8, the adsorption of the uncharged polymer decreased with the negative charge of the electrode due to the more favorable adsorption of potassium ions on the charged electrode. Discrepancies in adsorption-desorption measurements taken while cycling the pH were due to an electrostatic adsorption barrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号