首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fresh skim milk is a stable colloidal system containing casein micelles and whey proteins. By decreasing the pH, the casein micelles become unstable and a gel is formed. During heat treatment at temperatures higher than 70 degrees C, the major whey proteins, e.g. alpha-lactalbumin and beta-lactoglobulin denature and start to interact with each other and with casein micelles. This changes the colloidal properties of the casein micelles. In this article, the pH-induced gel formation of heat-treated milk and the role of whey proteins was studied. Heat treatment in the range 70-90 degrees C induced a shift in gelation pH of skim milk to more alkaline pH values. This shift was directly related to whey protein denaturation. By using WPF milk it was shown that beta-lactoglobulin is principally responsible for the shift in gelation pH. alpha-lactalbumin caused neither alone nor in combination with beta-lg, an effect on the gelation pH. Heat treatment of milk for 10 min at 90 degrees C resulted in complete denaturation of the beta-lg present in skim milk but it is estimated that the casein micelles are coated only up to 40% by whey proteins when compared with pure whey protein aggregates.  相似文献   

2.
The rennet-induced aggregation of skim milk recombined with whey protein-stabilized emulsion droplets was studied using diffusing wave spectroscopy (DSW) and small deformation rheology. The effect of different volume fractions of casein micelles and fat globules was investigated by observing changes in turbidity (1/l*), apparent radius, elastic modulus and mean square displacement (MSD), in addition to confocal imaging of the gels.Skim milk containing different concentration of casein micelles showed comparable light-scattering profiles; a higher volume fraction of caseins led to the development of more elastic gels.By following the development of 1/l* in recombined milks, it was possible to describe the behaviour of the fat globules during the initial stages of rennet coagulation. Increasing the volume fraction of fat globules showed a significant increase in gel elasticity, caused by flocculation of the oil droplets. The presence of flocculated oil globules within the gel structure was confirmed by confocal microscopy observations. Moreover, a lower degree of κ-casein hydrolysis was needed to initiate casein micelles aggregation in milk containing whey protein-stabilized oil droplets compared to skim milk.This study for the first time clearly describes the impact of a mixture of casein micelles and whey protein-stabilized fat globules on the pre-gelation stages of rennet coagulation, and further highlights the importance of the flocculation state of the emulsion droplets in affecting the structure formation of the gel.  相似文献   

3.
4.
Spreading of a drop of an emulsion made with milk proteins on air/water interfaces was studied. From an unheated emulsion, all oil molecules could spread onto the air/water interface, indicating that the protein layers around the oil globules in the emulsion droplet were not coherent enough to withstand the forces involved in spreading. Heat treatment (90 °C) of emulsions made with whey protein concentrate (WPC) or skim milk powder reduced the spreadability, probably because polymerisation of whey protein at the oil/water interface increased the coherence of the protein layer. Heat treatment of emulsions made with WPC and monoglycerides did not reduce spreadability, presumably because the presence of the monoglycerides at the oil/water interface prevented a substantial increase of coherence of the protein layer. Heat treatment of caseinate-stabilised emulsions had no effect on the spreadability. If proteins were already present at the air/water interface, oil did not spread if the surface tension (γ) was <60 mN/m. We introduced a new method to measure the rate at which oil molecules spread from the oil globules in the emulsion droplet by monitoring changes in γ at various positions in a ‘trough’. The spreading rates observed for the various systems agree very well with the values predicted by the theory. Spreading from oil globules in a drop of emulsion was faster than spreading from a single oil drop, possibly due to the greater surface tension gradient between the oil globule and the air/water interface or to the increased oil surface area. Heat treatment of an emulsion made with WPC did not affect the spreading rate. The method was not suitable for measuring the spreading rate at interfaces where surface active material is already present, because changes in γ then were caused by compression of the interfacial layer rather than by the spreading oil.  相似文献   

5.
To investigate the emulsifying properties and adsorption behaviour of high molecular amphiphilic substances such as proteins, it is important to maintain the native status of the used samples. The new method of micro porous glass (MPG) emulsification could offer an opportunity to do this because of the low shear forces. The oil-in-water emulsions were produced by dispersing the hydrophobic phase (liquid butter fat or sunflower oil) through the MPG of different average pore diameters (dp=0.2 or 0.5 μm) into the flowing continuous phase containing the milk proteins (from reconstituted skim milk and buttermilk). The emulsions were characterised by particle size distribution, creaming behaviour and protein adsorption at the hydrophobic phase. The particle size distribution of protein-stabilised MPG emulsions is determined by the pore size of MPG, the velocity of continuous phase (or wall shear stress σw) and the transmembrane pressure. A high velocity of =2 m s−1 (σw=13.4 Pa) and low pressure (pressure of disperse phase slightly exceeded the critical pressure ΔpTM=4.5 bar of 0.2 μm-MPG) led to the smallest droplet diameter. As a consequence of average droplet diameters of d43>3.5 μm creaming was observed without centrifugation in all MPG emulsions after 24 h, but no coalescence of the oil droplets occurred. The study of protein adsorption showed that the MPG emulsification at low shear forces resulted in lower protein load values (2.5±0.5 mg m−2) than pressure emulsification (11.5±1.0 mg m−2). In addition, the various emulsification conditions (MPG or pressure homogenization) led to differences in the relative proportions of casein fractions, whey proteins and milk fat globule membranes (MFGM) at the fat globule surfaces.  相似文献   

6.
The acid-induced aggregation of casein micelles from milk, in the presence of different whey protein preparations from heated and unheated milk, has been studied using diffusing wave spectroscopy (DWS). In particular, the study focused on the turbidity (or l*) parameter obtainable from DWS, which can give information on the interactions between particles in aggregating systems. The experiments provided evidence that the presence of small, soluble, whey protein/kappa-casein aggregates derived from heated milk gave rise to interactions with both heated and unheated casein micelles over a pH range of 5.6 down to 5.2. Comparison of heated and unheated milks, together with milks whose sera had been exchanged, showed that direct interactions were indeed occurring, even between untreated casein micelles and soluble whey protein complexes. Comparison of the behavior of the whey protein aggregates in emulsion preparations where they could not interact with the large particles confirmed that the effect was specific to the presence of casein micelles and could not arise simply from the aggregation of the whey proteins themselves.  相似文献   

7.
This review describes some of the effects of heat on several food systems containing milk proteins. Much of the recent research effort has been directed towards understanding the extensive effects of the thermal denaturation of the whey proteins (WPs) on the functional properties of heated systems (WP solutions and gels, emulsions and milks) that contain these proteins. Caseins play a more passive part during heating, apart from their specific interaction with denaturing WPs during the heat treatment of milk.  相似文献   

8.
9.
Ovine milk proteins were analyzed both by coupling HPLC and electrospray ionization mass spectrometry (ESI-MS) and by flow injection analysis and ESI-MS detection after separation and collection of fractions from gel permeation chromatography. These methods resolved the four ovine caseins and whey proteins and made it possible to study the complexity of these proteins associated with genetic polymorphism, post-translational changes (phosphorylation and glycosylation) and the presence of multiple forms of proteins. The experimental molecular masses of ewe milk proteins were: 19 373 for κ-casein 3P; 25 616 for s2-casein 10P; 23 411 for s1-casein C-8P; 23 750 for β-casein 5P; 18 170 and 18 148 for β-lactoglobulins A and B; 14 152 for -lactalbumin A and 66 322 for serum albumin.  相似文献   

10.
Quantitative analysis of competitive milk protein adsorption to air/water interfaces in aqueous foam was performed by capillary electrophoresis (CE). Foams were made by whipping protein solutions, in which skim milk powder (SMP) and whey protein isolate (WPI) were mixed at 0.5% protein in different proportions at different pH values and NaCl concentrations. Preferential adsorption of beta-casein into foam phases occurred under most solution conditions, if partial dissociation of the casein micelles had occurred. Preferential adsorption of beta-casein was not observed with added Ca2+, due to the re-association of casein micelles. Enrichment of caseins into the foam phase was more apparent than that of whey proteins. The foamability of SMP demonstrated a continuous improvement due to the gradually increasing dissociation of casein micelles when the concentration of NaCl increased from 0 to 0.8 M. The foamability of WPI increased when NaCl concentration rose from 0 to 0.1 M, and decreased with further increase in NaCl concentration. NaCl at low concentration (I < or = 0.4) did not show a significant effect on the competitive adsorption among milk proteins, indicating that electrostatic interactions do not play a key role in competitive adsorption. NaCl at higher concentration, e.g., 0.6 M, caused less whey protein to be adsorbed to the air/water interfaces. The whippability of WPI was highest at pH 4.5 and lowest at pH 3, and that of SMP was the opposite. The proportions of beta-lactoglobulin and alpha-lactalbumin in the foam phase were lower at acidic pH and higher at basic pH, compared with that at natural pH of WPI.  相似文献   

11.
The effect of spray drying and reconstitution has been studied for oil-in-water emulsions (20.6% maltodextrin, 20% soybean oil, 2.4% protein, 0.13 M NaCl, pH 6.7) with varying ratios of sodium caseinate and whey protein, but with equal size distribution (d32=0.77 μm). When the concentration of sodium caseinate in the emulsion was high enough to entirely cover the oil–water interface, the particle size distribution was hardly affected by spray drying and reconstitution. However, for emulsions of which the total protein consisted of more than 70% whey protein, spray drying resulted in a strong increase of the droplet size distribution. The adsorbed amount of protein ranged from 3 mg m−2 for casein-stabilised emulsions to 4 mg m−2 for whey protein-stabilised emulsions with a maximum of 4.2 mg m−2 for emulsions containing 80% whey protein on total protein, which means that for all these emulsions about one quarter of the available protein was adsorbed at the oil–water interface. The adsorbed amount of protein was hardly affected by spray drying. After emulsion preparation casein proteins adsorbed preferentially at the oil–water interface. As a result of spray drying, the relative amount of β-lactoglobulin in the adsorbed layer increased strongly at the expense of s1-casein and β-casein. Percentages of s2-casein and κ-casein in the adsorbed layer remained largely unchanged. The changes in the protein composition of the adsorbed layer as a result of spray drying and reconstitution were the largest when beforehand hardly any whey protein was present in the adsorbed layer and hardly any sodium caseinate in the aqueous phase. Apparently, during spray drying conditions have been such that β-lactoglobulin could unfold, aggregate, and react with other cystein-containing proteins changing the particle size distribution of the emulsions and the composition of the adsorbed layer. It seemed, however, that non-adsorbed sodium caseinate in some way was able to protect the adsorbed casein proteins from being displaced by aggregating whey protein.  相似文献   

12.
Age gelation is a major quality defect in ultra-high-temperature (UHT) pasteurized milk during extended storage. Changes in plasmin (PL)-induced sedimentation were investigated during storage (23 °C and 37 °C, four weeks) of UHT skim milk treated with PL (2.5, 10, and 15 U/L). The increase in particle size and broadening of the particle size distribution of samples during storage were dependent on the PL concentration, storage period, and storage temperature. Sediment analysis indicated that elevated storage temperature accelerated protein sedimentation. The initial PL concentration was positively correlated with the amount of protein sediment in samples stored at 23 °C for four weeks (r = 0.615; p < 0.01), whereas this correlation was negative in samples stored at 37 °C for the same time (r = −0.358; p < 0.01) due to extensive proteolysis. SDS-PAGE revealed that whey proteins remained soluble over storage at 23 °C for four weeks, but they mostly disappeared from the soluble phase of PL-added samples after two weeks’ storage at 37 °C. Transmission electron micrographs of PL-containing UHT skim milk during storage at different temperatures supported the trend of sediment analysis well. Based on the Fourier transform infrared spectra of UHT skim milk stored at 23 °C for three weeks, PL-induced particle size enlargement was due to protein aggregation and the formation of intermolecular β-sheet structures, which contributed to casein destabilization, leading to sediment formation.  相似文献   

13.
We have explored the relationships between the reaction force F(ξ), the reaction force constant κ(ξ) and the projected force constants of the intramolecular proton transfer HO−NS → ON−SH along the intrinsic reaction coordinate ξ. The structural changes and energetics associated with the reaction are analyzed in terms of the three regions defined by F(ξ): reactant, transition and product. The significance of the similarity between κ(ξ) and the variation of the force constant associated to the reaction coordinate mode, kξ(ξ), is discussed in detail.  相似文献   

14.
Different microporous ceramic membranes have been investigated to be used as separators in electrochemical reactors. The effect of porosity on the effective electrical conductivity of the ceramic membranes has been studied. The porosity of the membranes has been modified by changing the manufacturing pressure and by the addition of starch to the alumina–kaolin matrix. In the absence of starch the pore size distribution becomes more uniform with the increase of the manufacturing pressure, and lower porosities and average pore sizes are obtained. On the other hand, the porosity and the average pore size increase with the addition of starch to the alumina–kaolin matrix, but pore size distribution is less uniform and becomes bimodal with two different characteristic pore diameters.

The effective electrical conductivity of the membranes, κeff, increases with the decrease of manufacturing pressure and with the increase of starch content. The following correlation between the effective electrical conductivity and the porosity has been obtained: fc = κeff/κ = 0.35 1.04, where κ is the electrolyte electrical conductivity.  相似文献   


15.
Π/A isotherms of spread β-lactoglobulin and β-casein at the air–water interface are measured under different spreading conditions. While the isotherms do not show drastic effects of the spreading concentration and the compression rate the interfacial shear rheological behaviour is significantly influenced. In particular, the shear viscosity of β-lactoglobulin layers depend directly on the spreading concentration. Significant viscosity increase is obtained at larger surface pressures when the spreading concentration is increased. In contrast the shear rheology of the spread β-casein layers can be normalised by plotting the viscosities as a function of the surface pressure Π. The different behaviour is discussed in terms of denaturation of the β-lactoglobulin during the monolayer formation process by adsorption from the spread thin protein solution layer.  相似文献   

16.
The role of the non-gelling polysaccharide, propyleneglycol alginate (PGA), on the dynamics of gelation and gel properties of β-lactoglobulin (β-lg) under conditions where the protein alone does not gel (6%) was analyzed. To this end, the kinetics of gelation, aggregation and denaturation of β-lg in the mixed systems (pH 7) were studied at different temperatures (64–88 °C). The presence of PGA increased thermal stability of β-lg. The rate of β-lg denaturation was decreased and the onset and peak denaturation temperatures increased by 2.2–2.4 °C. PGA promoted the formation of larger aggregates that continued to grow in time. An average aggregate diameter of approximately 300 nm is reached at the gel point in the mixed β-lg+PGA systems, irrespective of the heating temperature. Comparing the activation energies for the aggregation (193 kJ/mol), denaturation (422 kJ/mol) and formation of the primary gel structure (1/tgel) (256 kJ/mol) processes in the mixed protein–polysaccharide system, it can be concluded that the rate determining step in the formation of the primary gel structure would be the aggregation of protein. Ea values for the processes after the gel point (solid phase gelation) suggest a diffusion limited process because of the high viscosity of the solid gelling matrix. The characteristics of the mixed β-lg+PGA gels in terms of rheological and textural parameters, water loss and microstructure were studied as a function of heating temperature and time. The extent of aggregation and the type of interactions involved, prior to denaturation seem to be very important in determining the gel structure and its properties.  相似文献   

17.
An interlaboratory study, with the participation of 8 laboratories, was conducted to evaluate a sodium dodecyl sulfate-capillary gel electrophoresis method for determination of adulteration of milk powder with soy and pea proteins. Calibration standards (0-8%, w/w, soy and pea protein in total protein) and adulterated skim milk powders (0-5%, w/w, soy and pea proteins in total protein) were produced. Vegetal proteins were determined after removal of milk proteins by pretreatment of the samples with tetraborate-EDTA buffer, pH 8.3. Repeatability standard deviations ranged from 9 to 15% and reproducibility standard deviations ranged from 25 to 30% in the samples containing 5% vegetal protein in total protein.  相似文献   

18.
Marvin LF  Parisod V  Fay LB  Guy PA 《Electrophoresis》2002,23(15):2505-2512
Infant formula powders were analyzed by liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) to assess the whey proteins quality, which may be altered by the heat treatment used during the processing conditions. Lactosylation was found to be the major chemical modification occurring in whey proteins. In parallel, a two-dimensional (2-D) gel electrophoresis was performed on the milk sample and the entire protein patterns were analyzed by nano-ESI-MS after cutting the different gel spots and in-gel trypsin digestion. A highly selective and specific tandem MS technique has been developed to characterize and localize up to ten lactosylation sites in beta-lactoglobulin (beta-Lg) and alpha(S2)-casein. alpha-Lactalbumin (alpha-La), with five lactosylated peptides, was found to be an interesting protein marker in the milk powder sample to detect chemical modification induced by the processing/storage conditions.  相似文献   

19.
Whipped foams (10%, w/v protein, pH 7.0) were prepared from commercially available samples of whey protein isolate (WPI) and egg white protein (EWP), and subsequently compared based on yield stress (τ0), overrun and drainage stability. Adsorption rates and interfacial rheological measurements at a model air/water interface were quantified via pendant drop tensiometry to better understand foaming differences among the ingredients. The highest τ0 and resistance to drainage were observed for standard EWP, followed by EWP with added 0.1% (w/w) sodium lauryl sulfate, and then WPI. Addition of 25% (w/w) sucrose increased τ0 and drainage resistance of the EWP-based ingredients, whereas it decreased τ0 of WPI foams and minimally affected their drainage rates. These differing sugar effects were reflected in the interfacial rheological measurements, as sucrose addition increased the dilatational elasticity for both EWP-based ingredients, while decreasing this parameter for WPI. Previously observed relationships between τ0 and interfacial rheology did not hold across the protein types; however, these measurements did effectively differentiate foaming behaviors within EWP-based ingredients and within WPI. Interfacial data was also collected for purified β-lactoglobulin (β-lg) and ovalbumin, the primary proteins of WPI and EWP, respectively. The addition of 25% (w/w) sucrose increased the dilatational elasticity for adsorbed layers of β-lg, while minimally affecting the interfacial rheology of adsorbed ovalbumin, in contrast to the response of WPI and EWP ingredients. These experiments underscore the importance of utilizing the same materials for interfacial measurements as used for foaming experiments, if one is to properly infer interfacial information/mechanisms and relate this information to bulk foaming measurements. The effects of protein concentration and measurement time on interfacial rheology were also considered as they relate to bulk foam properties. This data should be of practical assistance to those designing aerated food products, as it has not been previously reported that sucrose addition improves the foaming characteristics of EWP-based ingredients while negatively affecting the foaming behavior of WPI, as these types of protein isolates are common to the food industry.  相似文献   

20.
Fermentation of a reconstituted skim milk concentrate (8% protein) was investigated to elucidate the effects of various fermentation parameters on the structural, rheological and visual (wheying-off) properties of the resulting gels (pH 4.60). Fermentation trials were performed with non-exocellular polysaccharide-producing strains of Streptococcus thermophilus at various fermentation temperatures and at various chymosin levels. Oscillatory vane rheometry carried out on the intact gels (at 4 °C) showed that the level of chymosin had a significant impact on the gel strength (storage modulus G′). This can be explained by the arrangement of casein micelles into more compact aggregates and the enhanced fusion of aggregated casein micelles as revealed by transmission electron microscopy for the gels fermented with chymosin. Wheying-off of the stirred gels as measured by a centrifugation test (at 4 °C) and pore size of the intact gel structures investigated by scanning electron microscopy both increased with increasing level of chymosin and increasing fermentation temperature (resulting in an increase in acidification rate). A higher level of syneresis (wheying-off) is explained by the larger pore size, since larger pores present a lower resistance to the outflow of whey from the gel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号