首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The large J2 limit of the square-lattice J1-J2 Heisenberg antiferromagnet is a classic example of order by disorder where quantum fluctuations select a collinear ground state. Here, we use series expansion methods and a mean-field spin-wave theory to study the excitation spectra in this phase and look for a finite-temperature Ising-like transition, corresponding to a broken symmetry of the square lattice, as first proposed by Chandra et al. [Phys. Rev. Lett. 64, 88 (1990)]]. We find that the spectra reveal the symmetries of the ordered phase. However, we do not find evidence for a finite-T transition. We suggest a scenario for a T=0 transition based on quantum fluctuations.  相似文献   

3.
The ground-state phase transition and the phonon dispersion relation of the quantum double-well model are studied by means of the time-dependent variational approach combined with a Hartree-type many-body trial wavefunction. The single-particle state is taken to be a frozen Jackiw-Kerman wavefunction. Under the condition of minimum uncertainty relation, we obtain an effective classical Hamiltonian for the system and equations of motion for the particle's expectation values. It is shown that the effective substrate potential transits from a symmetric double-well potential to a symmetric single-well potential, and the ground state exhibits a transition from a broken symmetry phase to a restored symmetry phase as increasing the strength of quantum fluctuations. We also obtain the phonon dispersion relations and the phonon gaps at the two phases.  相似文献   

4.
To describe a quantum phase transition in a dimerized antiferromagnet, the formalism of the Landau theory of phase transitions has been applied. The energy of the ground state is minimized by varying the parameter of the mixing of the wavefunctions with different multiplicities. The critical behavior of the parameter of the wavefunction is responsible for the critical behavior of the observables.  相似文献   

5.
We study a frustrated spin-S staggered-dimer Heisenberg model on square lattice by using the bond-operator representation for quantum spins, and investigate the emergence of classical magnetic order from the quantum mechanical (staggered-dimer singlet) ground state for increasing S. Using triplon analysis, we find the critical couplings for this quantum phase transition to scale as 1 /S(S + 1). We extend the triplon analysis to include the effect of quintet dimer-states, which proves to be essential for establishing the classical order (Néel or collinear in the present study) for large S, both in the purely Heisenberg case and also in the model with single-ion anisotropy.  相似文献   

6.
We consider the spin-1/2 Heisenberg chain with alternating spin exchange in the presence of additional modulation of exchange on odd bonds with period 3. We study the ground state magnetic phase diagram of this hexamer spin chain in the limit of very strong antiferromagnetic (AF) exchange on odd bonds using the numerical Lanczos method and bosonization approach. In the limit of strong magnetic field commensurate with the dominating AF exchange, the model is mapped onto an effective XXZ Heisenberg chain in the presence of uniform and spatially modulated fields, which is studied using the standard continuum-limit bosonization approach. In the absence of additional hexamer modulation, the model undergoes a quantum phase transition from a gapped phase into the only one gapless Lüttinger liquid (LL) phase by increasing the magnetic field. In the presence of hexamer modulation, two new gapped phases are identified in the ground state at magnetization equal to [Formula: see text] and [Formula: see text] of the saturation value. These phases reveal themselves also in the magnetization curve as plateaus at corresponding values of magnetization. As a result, the magnetic phase diagram of the hexamer chain shows seven different quantum phases, four gapped and three gapless, and the system is characterized by six critical fields which mark quantum phase transitions between the ordered gapped and the LL gapless phases.  相似文献   

7.
We investigate the spatially anisotropic square lattice quantum antiferromagnet. The model describes isotropic spin-1/2 Heisenberg chains (exchange constant J) coupled antiferromagnetically in the transverse (J( perpendicular )) and diagonal (J(x)), with respect to the chain, directions. Classically, the model admits two ordered ground states-with antiferromagnetic and ferromagnetic interchain spin correlations-separated by a first-order phase transition at J( perpendicular )=2J(x). We show that in the quantum model this transition splits into two, revealing an intermediate quantum-disordered columnar dimer phase, both in two dimensions and in a simpler two-leg ladder version. We describe quantum-critical points separating this spontaneously dimerized phase from classical ones.  相似文献   

8.
We consider a spin-1/2 tube (a three-leg ladder with periodic boundary conditions) with a Hamiltonian given by two projection operators-one on the triangles and the other on the square plaquettes on the side of the tube-that can be written in terms of Heisenberg and four-spin ring exchange interactions. We identify 3 phases: (i)?for strongly antiferromagnetic exchange on the triangles, an exact ground state with a gapped spectrum can be given as an alternation of spin and chirality singlet bonds between nearest triangles; (ii)?for ferromagnetic exchange on the triangles, we recover the phase of the spin-3/2 Heisenberg chain; (iii)?between these two phases, a gapless incommensurate phase exists. We construct an exact ground state with two deconfined domain walls and a gapless excitation spectrum at the quantum phase transition point between the incommensurate and dimerized phases.  相似文献   

9.
10.

The study of phase transition is usually done by numerical simulation of finite system. Conventional methods such as Monte Carlo simulations and phenomenological renormalization group methods obtain the critical exponents without obtaining the quantum wavefunction of the system. The Matrix Product States formalism allows one to obtain accurate numerical wavefunctions of short ranged interacting quantum many-body systems. In this study we combine the Finite Size Scaling theory and Matrix Product States formalism to study the critical dynamics of one-dimensional quantum Ising model. Finite size simulations of 20, 40, 60, 80, 100 and 120 spins are done using the Density Matrix Renormalization Group to obtain the ground state wavefunction of the system. The thermodynamic quantities such as the magnetization, susceptibility and correlation function are calculated. The critical exponents independently calculated are respectively β/ν = 0.1235(1), γ/ν = 1.7351(2), and η = 0.249(1). They conform with the theoretical values from analytical solution and fulfil the hyperscaling relation. We showed that both methods combined can reliably study the critical dynamics of one-dimensional Ising-like quantum lattice systems. Application of the study on water-ice phase transition of single-file water in nanopores is proposed.

  相似文献   

11.
The two-dimensional J-J' dimerized quantum Heisenberg model is studied on the square lattice by means of (stochastic series expansion) quantum Monte Carlo simulations as a function of the coupling ratio alpha=J'/J. The critical point of the order-disorder quantum phase transition in the J-J' model is determined as alpha_c=2.5196(2) by finite-size scaling for up to approximately 10 000 quantum spins. By comparing six dimerized models we show, contrary to the current belief, that the critical exponents of the J-J' model are not in agreement with the three-dimensional classical Heisenberg universality class. This lends support to the notion of nontrivial critical excitations at the quantum critical point.  相似文献   

12.
By Lanczos exact diagonalization and the infinite time-evolving block decimation (iTEBD) technique, the two-site entanglement as well as the bipartite entanglement, the ground state energy, the nearest-neighbor correlations, and the magnetization in the antiferromagnetic Heisenberg (AFH) model under an external field are investigated. With increasing external field, the small size system shows some distinct upward magnetization stairsteps, accompanied synchronously with some downward two-site entanglement stairsteps. In the thermodynamic limit, the two-site entanglement, as well as the bipartite entanglement, the ground state energy, the nearest-neighbor correlations, and the magnetization are calculated, and the critical magnetic field h(c) = 2.0 is determined exactly. Our numerical results show that the quantum entanglement is sensitive to the subtle changing of the ground state, and can be used to describe the magnetization and quantum phase transition. Based on the discontinuous behavior of the first-order derivative of the entanglement entropy and fidelity per site, we think that the quantum phase transition in this model should belong to the second-order category. Furthermore, in the magnon existence region (h < 2.0), a logarithmically divergent behavior of block entanglement which can be described by a free bosonic field theory is observed, and the central charge c is determined to be 1.  相似文献   

13.
We investigate the nonmagnetic phase of the spin-half frustrated Heisenberg antiferromagnet on the square lattice using exact diagonalization (up to 36 sites) and quantum Monte Carlo techniques (up to 144 sites). The spin gap and the susceptibilities for the most important crystal symmetry breaking operators are computed. A genuine and somehow unexpected "plaquette resonating valence bond," with spontaneously broken translation symmetry and no broken rotation symmetry, comes out from our numerical simulations as the most plausible ground state for J(2)/J(1) approximately 0.5.  相似文献   

14.
The two-layer square lattice quantum antiferromagnet with spins 12 shows a zero-field magnetic order-disorder transition at a critical ratio of the inter-plane to intra-plane couplings. Adding a uniform magnetic field tunes the system to canted antiferromagnetism and eventually to a fully polarized state; similar behavior occurs for ferromagnetic intra-plane coupling. Based on a bond operator spin representation, we propose an approximate ground state wavefunction which consistently covers all phases by means of a unitary transformation. The excitations can be efficiently described as independent bosons; in the antiferromagnetic phase these reduce to the well-known spin waves, whereas they describe gapped spin-1 excitations in the singlet phase. We compute the spectra of these excitations as well as the magnetizations throughout the whole phase diagram. Received 23 April 2001  相似文献   

15.
We propose that competition between Kondo and magnetic correlations results in a novel universality class for heavy fermion quantum criticality in the presence of strong randomness. Starting from an Anderson lattice model with disorder, we derive an effective local field theory in the dynamical mean-field theory approximation, where randomness is introduced into both hybridization and Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions. Performing the saddle-point analysis in the U(1) slave-boson representation, we reveal its phase diagram which shows a quantum phase transition from a spin liquid state to a local Fermi liquid phase. In contrast with the clean limit case of the Anderson lattice model, the effective hybridization given by holon condensation turns out to vanish, resulting from the zero mean value of the hybridization coupling constant. However, we show that the holon density becomes finite when the variance of the hybridization is sufficiently larger than that of the RKKY coupling, giving rise to the Kondo effect. On the other hand, when the variance of the hybridization becomes smaller than that of the RKKY coupling, the Kondo effect disappears, resulting in a fully symmetric paramagnetic state, adiabatically connected to the spin liquid state of the disordered Heisenberg model. We investigate the quantum critical point beyond the mean-field approximation. Introducing quantum corrections fully self-consistently in the non-crossing approximation, we prove that the local charge susceptibility has exactly the same critical exponent as the local spin susceptibility, suggesting an enhanced symmetry at the local quantum critical point. This leads us to propose novel duality between the Kondo singlet phase and the critical local moment state beyond the Landau-Ginzburg-Wilson paradigm. The Landau-Ginzburg-Wilson forbidden duality serves the mechanism of electron fractionalization in critical impurity dynamics, where such fractionalized excitations are identified with topological excitations.  相似文献   

16.
We study the thermodynamics of the spin-S two-dimensional quantum Heisenberg antiferromagnet on the square lattice with nearest (J1) and next-nearest (J2) neighbor couplings in its collinear phase (J(2)/J(1)>0.5), using the pure-quantum self-consistent harmonic approximation. Our results show the persistence of a finite-temperature Ising phase transition for every value of the spin, provided that the ratio J(2)/J(1) is greater than a critical value corresponding to the onset of collinear long-range order at zero temperature. We also calculate the spin and temperature dependence of the collinear susceptibility and correlation length, and we discuss our results in light of the experiments on Li2VOSiO4 and related compounds.  相似文献   

17.
We study the ground-state and thermal entanglement in the mixed-spin (S,s)=(1,1/2) Heisenberg chain with single-ion anisotropy D using exact diagonalization of small clusters. In this system, a quantum phase transition is revealed to occur at the value D=0, which is the bifurcation point for the global ground state; that is, when the single-ion anisotropy energy is positive, the ground state is unique, whereas when it is negative, the ground state becomes doubly degenerate and the system has the ferrimagnetic long-range order. Using the negativity as a measure of entanglement, we find that a pronounced dip in this quantity, taking place just at the bifurcation point, serves to signal the quantum phase transition. Moreover, we show that the single-ion anisotropy helps to improve the characteristic temperatures above which the quantum behavior disappears.  相似文献   

18.
We investigate quantum phase transitions in the frustrated antiferromagnetic Heisenberg model for SrCu2(BO3)(2) by using the series expansion method. It is found that a novel spin-gap phase, adiabatically connected to the plaquette-singlet phase, exists between the dimer and the magnetically ordered phases known thus far. When the ratio of the competing exchange couplings alpha( = J'/J) is varied, this spin-gap phase exhibits a first- (second-) order quantum phase transition to the dimer (the magnetically ordered) phase at the critical point alpha(c1) = 0.677(2) [ alpha(c2) = 0. 86(1)]. Our results shed light on some controversial arguments about the nature of quantum phase transitions in this model.  相似文献   

19.
We present a mean-field solution for a quantum, short-range interacting, disordered, SO(3) Heisenberg spin model, in which the Gaussian distribution of couplings is centered in an antiferromagnetic (AF) coupling J[over ]>0, and which, for weak disorder, can be treated as a perturbation of the pure AF Heisenberg system. The phase diagram contains, apart from a Néel phase at T=0, spin-glass and paramagnetic phases whose thermodynamic stability is demonstrated by an analysis of the Hessian matrix of the free-energy. The magnetic susceptibilities exhibit the typical cusp of a spin-glass transition.  相似文献   

20.
We exhibit a phase transition from a rough high-temperature phase to a rigid (localized) low-temperature phase in the discrete Gaussian chain with 1/r 2 interaction energy. This transition is related to a localization transition in the ground state for a quantum mechanical particle in a one-dimensional periodic potential, coupled to quantum 1/f noise.This paper is dedicated to J. L. Lebowitz on the occasion of his 60th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号