首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A strong Al+ and a minor Ti+ peak without a proportional increase of the O+ signal in SNMS high-frequency sputtering mode (HFM) time profiles of an insulating μm-thick oxide layer on Ti-48Al-2Cr-2Nb led us to check for a possible contribution of positive secondary ions (SI+). SI+ and SI (negative secondary ions) can be detected in ion energy spectra. This is shown using Al+, O, AlO, and AlO2 ions sputtered from massive Al2O3. Similarly, and depending on stoichiometry, also Ti+ from mixed sintered, microscopically inhomogeneous Al2O3-TiO2-SiO2 pellets has been identified to be partly SI+. The subtraction of an assumed contribution of ionized secondary neutrals (SN+) suggests that SI+ may form several 10% of the detected ions obtained in the HFM sputtering and plasma processes. However, the positive surface potential of some 10 V being necessary to cause detectable SI+ contributions does not build up on μm-thin insulating layers. Therefore, we have to conclude that the Al+ and Ti+ peaks in the sputter time profiles of the μm-thick oxide layer on Ti-48Al-2Cr-2Nb which are accompanied by an O+ deficiency cannot have been caused by SI+. Instead, their more probable origin is the inhomogeneous Al2O3 interlayer itself. Together with the residues of a topmost TiO2 layer which has strongly been depleted in O by preferential sputtering, the relative O+ deficiency may be explained without assuming SI+ contributions. Received: 22 February 1999 / Revised: 1 July 1999 / Accepted: 6 July 1999  相似文献   

2.
The construction of an experimental apparatus, for investigation of implantation, secondary ion emission and sputtering processes, during irradiation of samples with an ion beam of up to 70 keV energy, is described. The basis of the apparatus is an electromagnetic mass separator equipped with a quadrupole mass spectrometer located in the collector chamber. The computer data acquisition control system makes it possible to perform the experimental measurements with high accuracy and precision. Preliminary results of secondary ion mass spectral measurements, obtained for C, Al, Si and Cu targets bombarded with Ar(+) and Kr(+) ions, are presented.  相似文献   

3.
Analytical Chemistry Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA Secondary ion mass spectra were obtained from a series of C4-C10 n-alkylamines introduced via the gas phase onto glycerol. It was found that the amine-characteristic secondary ion intensity varied linearly with amine partial pressure. Henry's law constants and surface activity constants for each of the amines in glycerol solution were measured. A linear correlation was found between amine-characteristic secondary ion intensity and Henry's law concentrations. The concentrations calculated from Henry's law were too low to yield the intensities observed, indicating that secondary ion precursors were not free-base amine molecules but ions in solution. Explicit kinetic equations describing glycerol and amine protonation and deprotonation as a result of primary ion damage to the solutions are derived to rationalize the observed spectra.  相似文献   

4.
Summary Secondary ion emission has been investigated for Ti, V, Cr and for Co, Ni and Cu under 9 mPa of NO as reactant gas with dynamic SIMS conditions. Using pivoted targets the relative intensities of various positive secondary ions were measured for varied incidence angles of the primary Ar+ ions (2 keV; 32 A·cm–2). The axis of the PI beam and the axis of the SI detector were fixed rectangular to each other. The targets could be rotated about an axis perpendicular to both the PI and the detector axis. From the directional change of the emission of the metal ions Me+ a geometric shift parameter Ps could be deduced which proved to be related to the relative secondary ion yield and may therefore be used for surface characterization.  相似文献   

5.
Depth profiles of Ga2O3/a-SiO2/Al2O3- substrate, Ga2O3/a-Si3N4/Al2O3- substrate, and Ga2O3/Al2O3 substrate thin layers were determined by the SNMS/HFM method. Al diffusion from the Al2O3 substrate was investigated after 50, and in some cases after 600 hours of heat treatment time at different temperatures (600 °C,850 °C,950 °C,1050 °C and 1150 °C). The diffusion coefficient of Al at 850 °C was found to be D Al=8.7 * 10–18 cm2/s in amorphous SiO2; D Al=1.5*10–17 cm2/s in amorphous Si3N4 and D Al=5.5* 10–16 cm2/s in Ga2O3 at 600 °C, respectively. The possible diffusion mechanism is explained in terms of the metal-oxygen bond-strengths. Although the studied materials have high resistivity at room temperature, the applied SNMS/HFM method has proven to be an efficient surface analytical tool even in these cases.Dedicated to Professor Dr. rer. nat. Dr. h.c. Hubertus Nickel on the occasion of his 65th birthday  相似文献   

6.
The low-pressure rf plasma of a secondary neutral mass spectrometer (e-gas SNMS) was connected with a time-of-flight (ToF) mass spectrometer for the first time. As opposed to ToF–SIMS in e-gas SNMS, the primary ion pulse cannot be used for triggering the flight time measurement. Therefore, an extraction pulse is used which at a defined time loads an ion package from the beam of the post-ionised particles into the ToF spectrometer. The newly developed ToF–SNMS system is described, and first experimental results are presented.  相似文献   

7.
The emission of MCs+ molecular ions sputtered by Cs+ ion impact from a variety of elemental (Si and Ge) and compound (GaAs, InP, InSb, ZnSe, CdS, CdSe, CdTe and CdZnTe) semiconductors and a selection of glass samples of different composition has been investigated. For the glass samples a set of relative sensitivity factors has been determined which are largely composition-independent and provide the possibility of a reliable quantification of glasses by MCs+ SIMS. For the semiconductors fractional ion yields (i.e. the number of detected MCs+ ions per sputtered M atom) range from 10?6 to some 10?4 and exhibit little variation with the oxygen surface coverage of the specimen. Depending on M, the emission of MOCs+ molecular species becomes prominent (or even dominating) at high oxygen concentrations. Furthermore, total sputtering yields for 5.5 keV Cs+ impact and different oxygen partial pressures have been determined from sputtered craters.  相似文献   

8.
Alkanethiol self‐assembled monolayers/multilayers (SAMs) have been applied as model organic systems with which to investigate secondary ion formation and emission processes during kiloelectronvolt ion bombardment. Self‐assembled monolayer and multilayer films of 11‐mercaptoundecanoic acid capped with 1‐dodecanethiol were prepared on gold‐coated substrates. Samples with varying number of thiolate layers were studied using static secondary ion mass spectrometry to investigate the origin of molecular secondary ions and the influence of surface chemistry and structure. The nature of the thiolate bonding affects the type and abundance of the observed ions. The intensity of atomic and cluster ions derived from the substrate decreases exponentially with increasing number of thiolate overlayers because of losses in transmission through the organic overlayers. Intact molecular and cluster ions can escape from >100 Å below the surface of these structures. The variation of molecular‐ion yields with multilayer thickness suggests that a significant proportion of molecular ions originate from subsurface thiolate layers. The detection of ions comprised species from the substrate or bottom of the multilayer associated with species from the top layer supports the view that chemical association at or near the surface is a viable mechanism of formation for molecular secondary ions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
For Ar+ bombarded polycrystalline surfaces of Ta, Co, Ni, Pd and Pt the emission of positive secondary ions was observed using nitrogen dioxide as reactant gas with varied partial pressure (0.001 mPa <p {spno}2 < 10 mPa) and dynamic SIMS conditions (2 keV; 32 A/cm2). The results indicate that NO2 molecules appear to be completely destroyed in adsorption to Ta. Different behaviour was found for the other target metals. This can be explained by assuming surface species of partially molecular type. In some cases the results indicate two different modes of surface interaction with the reactant gas.  相似文献   

10.
A series of ionic and neutral Group VIII transition metal complexes with molecular masses up to 2500 u were analysed by time-of-flight secondary ion mass spectrometry (SIMS) and plasma desorption mass spectrometry (PDMS). The secondary ion emission, the secondary ion yields and the yield ratios Y(PDMS)/Y(SIMS) of 20 ionic and neutral metal complexes were determined. Both techniques generally provide both molecular and fragment ion information. Characteristic fragmentation patterns give useful data for structural characterization. Additionally, the stabilities of different secondary ion species were compared by their half-lives. Both PDMS and SIMS are very sensitive, yielding optimum spectra from total sample sizes as low as 5 nmol, and the sample consumption is negligible.  相似文献   

11.
12.
The new high frequency mode (HFM) of the SNMS apparatus, type INA3, is especially suited for the analysis of electrically non-conducting materials. Experiments were carried out with glasses and various oxide coatings in order to demonstrate the quantifiability of HFM analyses with respect to these materials. The influence of the composition of the samples and the selected parameters of the HFM, such as accelerating voltage, duty cycle and frequency, on the quantifiability of the measurements are discussed. It is shown that quantification is possible within certain limits of composition.  相似文献   

13.
The emission of MCs+ molecular ions sputtered by Cs+ ion impact from a variety of elemental (Si and Ge) and compound (GaAs, InP, InSb, ZnSe, CdS, CdSe, CdTe and CdZnTe) semiconductors and a selection of glass samples of different composition has been investigated. For the glass samples a set of relative sensitivity factors has been determined which are largely composition-independent and provide the possibility of a reliable quantification of glasses by MCs+ SIMS. For the semiconductors fractional ion yields (i.e. the number of detected MCs+ ions per sputtered M atom) range from 10–6 to some 10–4 and exhibit little variation with the oxygen surface coverage of the specimen. Depending on M, the emission of MOCs+ molecular species becomes prominent (or even dominating) at high oxygen concentrations. Furthermore, total sputtering yields for 5.5 keV Cs+ impact and different oxygen partial pressures have been determined from sputtered craters.  相似文献   

14.
15.
A “shotgun” tandem mass spectrometry (MS) approach involving the use of multiple lipid-class-specific precursor ion and neutral loss scan mode experiments has been employed to identify and characterize the glycerophosphatidylethanolamine (GPEtn) lipids that were present within a crude lipid extract of a normal rat retina, obtained with minimal sample handling prior to analysis. Characterization of these lipids was performed by complementary analysis of their protonated and deprotonated precursor ions, as well as their various ionic adducts (e.g., Na+, Cl-), using a triple-quadrupole mass spectrometer. Notably, the application of novel precursor ion and neutral loss scans of m/z 164 and m/z 43, respectively, for the specific identification of sodiated GPEtn precursor ions following the addition of 500 μM NaCl to the crude lipid extracts was demonstrated. The use of these novel MS/MS scans in parallel provided simplified MS/MS spectra and enhanced the detection of 1-alkenyl, 2-acyl (plasmenyl) GPEtn lipids relative to the positive ion mode neutral loss m/z 141 commonly used for GPEtn analysis. Furthermore, the novel use of a “low energy” neutral loss scan mode experiment to monitor for the exclusive loss of 36m/z (HCl) from [M+Cl]- GPEtn adducts was demonstrated to provide a more than 25-fold enhancement for the detection of GPEtn lipids in negative ion mode analysis. Subsequent “high-energy” pseudo MS3 product ion scans on the precursor ions identified from this experiment were then employed to rapidly characterize the fatty acyl chain substituents of the GPEtn lipids. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Gavin E. ReidEmail:
  相似文献   

16.
A study is conducted on the effects of sample topography on the secondary ion mass spectrometry (SIMS) analysis of insulating samples, using poly(ethylene terephthalate) fibres (100 µm diameter) as a model system and simulations of the ion extraction field using finite element analysis. We focus on two significant issues: topographic field effects caused by the penetration of the extraction field into the sample, and the effect of charge compensation on the secondary ion images. Guidance is provided for setting the reflector voltage correctly for insulating fibres in reflectron SIMS instruments. The presence of the topographic sample distorts the extraction field, causing the secondary ions to be deflected laterally. This results in the severe loss of ion signals from the sides of the fibres because of the limited angular acceptance of the analyser. Strategies to reduce topographic field effects, including alternative sample mounting methods, are discussed. We also find that, in general, insulating samples are charged by the flood gun electrons resulting in a negative surface potential. This causes large variations in the SIMS images depending on the electron current, electron energy, raster mode and secondary ion polarity. Recommendations are given for analysts to obtain more reproducible images and reduce the effect of differential electron charging, for example by using a lower electron flood beam energy. © 2011 Crown copyright.  相似文献   

17.
In this paper, a comparison of the direct current (DC) and radiofrequency (RF) operating modes in glow discharge optical emission spectrometry (GD-OES) is carried out using the same discharge chamber, based on the Marcus design, powering alternatively with DC or RF energy. The effect of discharge pressure, the DC bias voltages and the delivered power divided by the DC-bias voltage on the sputtering rates, emission intensities and emission yields achieved for conducting materials was investigated in order to characterize both discharge types. Our results show that the effect of plasma variables on sputtering rates and emission yields using a DC-GD based on the chamber described by Marcus, can be considered to follow trends similar to those of the well-known DC-Grimm source. However, if the effect of plasma variables are compared for a DC-GD and a RF-GD, both generated by the same source as designed by Marcus, the behaviour of the DC and RF operations of the source proved to have some differences. Thus, at a fixed delivered power, the sputtering rate in the DC-GD decreases noticeably with pressure while the reverse effect is observed in the RF-GD. Moreover, under selected operating conditions, using the tin emission line (Sn I 380.102 nm), lower sputtering rates and higher emission yields were observed for the RF-GD than for the DC-GD source. Extension of known theoretical expressions and concepts from analytical DC-GD to RF-GD-OES work appears rather involved and is not yet possible.  相似文献   

18.
Summary Rare earth elements (REEs) in yttrium oxide were determined by secondary ion mass spectrometry (SIMS) with high sensitivity. The calibration graph approach was employed with chemically prepared standards. Molecular ion interferences derived from the matrix components which limit the superior sensitivity of SIMS were successfully suppressed by an energy filtering technique. The detection limits of the elements ranged from 0.02 to 0.2 g·g-1.  相似文献   

19.
The negative ion spectrum of a relatively thick layer (± 0. 5 μm) of poly(methylmethacrylate) (PMMA) with M?w = 1890 and its positive ion spectrum of a very thin layer (± 1. 0 nm) on silver measured with a time of flight secondary ion mass spectrometer are presented. From the negative ion spectrum it is concluded that formation of enolate anions from PMMA under static secondary ion mass spectrometric conditions is an important ion formation process. From fragmentation products of the polymer, detected as silver cationized species in the positive ion spectrum, more evidence was found of a fragmentation mechanism for PMMA under static secondary ion mass spectrometric conditions recently proposed in the literature. From the relation between the information obtained from the two types of spectra an extension of this mechanism is obtained. This mechanism implies scission of the polymer chain by the primary ion bombardment with subsequent formation of enolate anions from the newly formed polymer chain-ends.  相似文献   

20.
In recent years, Au‐cluster ions have been successfully used for organic analysis in secondary ion mass spectrometry. Cluster ions, such as Au and Au, can produce secondary ion yield enhancements of up to a factor of 300 for high mass organic molecules with minimal sample damage. In this study, the potential for using Au+, Au and Au primary ions for the analysis of inorganic samples is investigated by analyzing a range of silicate glass standards. Practical secondary ion yields for both Au and Au ions are enhanced relative to those for Au+, consistent with their increased sputter rates. No elevation in ionization efficiency was found for the cluster primary ions. Relative sensitivity factors for major and trace elements in the standards showed no improvement in quantification with Au and Au ions over the use of Au+ ions. Higher achievable primary ion currents for Au+ ions than for Au and Au allow for more precise analyses of elemental abundances within inorganic samples, making them the preferred choice, in contrast to the choice of Au and Au for the analysis of organic samples. The use of delayed secondary ion extraction can also boost secondary ion signals, although there is a loss of overall sensitivity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号