首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Team Orienteering with Decreasing Profits (DP-TOP) extends the classical Team Orienteering problem (TOP) by considering the profit of each client as a decreasing function of time. It consists of maximizing the sum of collected profit by a fixed number K of vehicles, visiting each client at most once. In this work, we present lower bounds based on a Dantzig-Wolfe decomposition and column generation as well as upper bounds obtained by an evolutionary local search approach (ELS).  相似文献   

2.
We consider the problem of sorting a permutation using a network of data structures as introduced by Knuth and Tarjan. In general the model as considered previously was restricted to networks that are directed acyclic graphs (DAGs) of stacks and/or queues. In this paper we study the question of which are the smallest general graphs that can sort an arbitrary permutation and what is their efficiency. We show that certain two-node graphs can sort in time Θ(n2) and no simpler graph can sort all permutations. We then show that certain three-node graphs sort in time Ω(n3/2), and that there exist graphs of k nodes which can sort in time Θ(nlogkn), which is optimal.  相似文献   

3.
We consider the problem of scheduling a sequence of packets over a linear network, where every packet has a source and a target, as well as a release time and a deadline by which it must arrive at its target. The model we consider is bufferless, where packets are not allowed to be buffered in nodes along their paths other than at their source. This model applies to optical networks where opto-electronic conversion is costly, and packets mostly travel through bufferless hops. The offline version of this problem was previously studied in M. Adler et al. (2002) [3]. In this paper we study the online version of the problem, where we are required to schedule the packets without knowledge of future packet arrivals. We use competitive analysis to evaluate the performance of our algorithms. We present the first online algorithms for several versions of the problem. For the problem of throughput maximization, where all packets have uniform weights, we give an algorithm with a logarithmic competitive ratio, and present some lower bounds. For other weight functions, we show algorithms that achieve optimal competitive ratios.  相似文献   

4.
An important problem in the context of wireless sensor networks is the Maximum Network Lifetime Problem (MLP): find a collection of subset of sensors (cover) each covering the whole set of targets and assign them an activation time so that network lifetime is maximized. In this paper we consider a variant of MLP, where we allow each cover to neglect a certain fraction (1 ? α) of the targets. We analyze the problem and show that the total network lifetime can be hugely improved by neglecting a very small portion of the targets. An exact approach, based on a Column Generation scheme, is presented and a heuristic solution algorithm is also provided to initialize the approach. The proposed approaches are tested on a wide set of instances. The experimentation shows the effectiveness of both the proposed problems and solution algorithms in extending network lifetime and improving target coverage time when some regularity conditions are taken into account.  相似文献   

5.
In this paper, we consider the minimum flow problem on network flows in which the lower arc capacities vary with time. We will show that this problem for set {0, 1, … , T} of time points can be solved by at most n minimum flow computations, by combining of preflow-pull algorithm and reoptimization techniques (no matter how many values of T are given). Running time of the presented algorithm is O(n2m).  相似文献   

6.
The convex cost network flow problem is to determine the minimum cost flow in a network when cost of flow over each arc is given by a piecewise linear convex function. In this paper, we develop a parametric algorithm for the convex cost network flow problem. We define the concept of optimum basis structure for the convex cost network flow problem. The optimum basis structure is then used to parametrize v, the flow to be transsshipped from source to sink. The resulting algorithm successively augments the flow on the shortest paths from source to sink which are implicitly enumerated by the algorithm. The algorithm is shown to be polynomially bounded. Computational results are presented to demonstrate the efficiency of the algorithm in solving large size problems. We also show how this algorithm can be used to (i) obtain the project cost curve of a CPM network with convex time-cost tradeoff functions; (ii) determine maximum flow in a network with concave gain functions; (iii) determine optimum capacity expansion of a network having convex arc capacity expansion costs.  相似文献   

7.
We consider the minimum s, t-cut problem in a network with parametrized arc capacities. Following the seminal work of Gallo et?al. (SIAM J. Comput. 18(1):30–55, 1989), classes of this parametric problem have been shown to enjoy the nice Structural Property that minimum cuts are nested, and the nice Algorithmic Property that all minimum cuts can be computed in the same asymptotic time as a single minimum cut by using a clever Flow Update step to move from one value of the parameter to the next. We present a general framework for parametric minimum cuts that extends and unifies such results. We define two conditions on parametrized arc capacities that are necessary and sufficient for (strictly) decreasing differences of the parametric cut function. Known results in parametric submodular optimization then imply the Structural Property. We show how to construct appropriate Flow Updates in linear time under the above conditions, implying that the Algorithmic Property also holds under these conditions. We then consider other classes of parametric minimum cut problems, without decreasing differences, for which we establish the Structural and/or the Algorithmic Property, as well as other cases where nested minimum cuts arise.  相似文献   

8.
The team orienteering problem (TOP) is a generalization of the orienteering problem. A limited number of vehicles is available to visit customers from a potential set. Each vehicle has a predefined running-time limit, and each customer has a fixed associated profit. The aim of the TOP is to maximize the total collected profit. In this paper we propose a simple hybrid genetic algorithm using new algorithms dedicated to the specific scope of the TOP: an Optimal Split procedure for chromosome evaluation and local search techniques for mutation. We have called this hybrid method a memetic algorithm for the TOP. Computational experiments conducted on standard benchmark instances clearly show our method to be highly competitive with existing ones, yielding new improved solutions in at least 5 instances.  相似文献   

9.
This paper considers a problem in which an unexpected event immobilises a vehicle of a distribution fleet permanently, and the remaining vehicles are rerouted to serve some of the clients of the failed vehicle. We model this case as a variation of the Team Orienteering Problem (TOP), constraining all vehicle routes to an upper time, or distance, limit, and taking into account the limited capacity of the fleet vehicles. The problem requires an effective solution in almost real time. We propose a new heuristic to provide efficient solutions within this strict computational time constraint. To test the quality of the heuristic, we have developed and validated a Genetic Algorithm (GA) that obtains high quality (but computationally expensive) solutions. The solutions of the heuristic compare favorably to those obtained by the GA. The latter has also been tested successfully in a real-time fleet management system.  相似文献   

10.
Here we are dealing with minimum cost flow problem on dynamic network flows with zero transit times and a new arc capacity, horizon capacity, which denotes an upper bound on the total flow traversing through on an arc during a pre-specified time horizon T. We develop a simple approach based on mathematical modelling attributes to solve the min-cost dynamic network flow problem where arc capacities and costs are time varying, and horizon capacities are considered. The basis of the method is simple and relies on the appropriate defining of polyhedrons, and in contrast to the other usual algorithms that use the notion of time expanded network, this method runs directly on the original network.  相似文献   

11.
We consider a robust location–allocation problem with uncertainty in demand coefficients. Specifically, for each demand point, only an interval estimate of its demand is known and we consider the problem of determining where to locate a new service when a given fraction of these demand points must be served by the utility. The optimal solution of this problem is determined by the “minimax regret” location, i.e., the point that minimizes the worst-case loss in the objective function that may occur because a decision is made without knowing which state of nature will take place. For the case where the demand points are vertices of a network we show that the robust location–allocation problem can be solved in O(min{pn − p}n3m) time, where n is the number of demand points, p (p < n) is the fixed number of demand points that must be served by the new service and m is the number of edges of the network.  相似文献   

12.
Temporal dynamics is a crucial feature of network flow problems occurring in many practical applications. Important characteristics of real-world networks such as arc capacities, transit times, transit and storage costs, demands and supplies etc. are subject to fluctuations over time. Consequently, also flow on arcs can change over time which leads to so-called dynamic network flows. While time is a continuous entity by nature, discrete-time models are often used for modeling dynamic network flows as the resulting problems are in general much easier to handle computationally. In this paper, we study a general class of dynamic network flow problems in the continuous-time model, where the input functions are assumed to be piecewise linear or piecewise constant. We give two discrete approximations of the problem by dividing the considered time range into intervals where all parameters are constant or linear. We then present two algorithms that compute, or at least converge to optimum solutions. Finally, we give an empirical analysis of the performance of both algorithms.  相似文献   

13.
Given an undirected, connected network G=(V,E) with weights on the edges, the cut basis problem is asking for a maximal number of linear independent cuts such that the sum of the cut weights is minimized. Surprisingly, this problem has not attained as much attention as another graph theoretic problem closely related to it, namely, the cycle basis problem. We consider two versions of the problem: the unconstrained and the fundamental cut basis problem.For the unconstrained case, where the cuts in the basis can be of an arbitrary kind, the problem can be written as a multiterminal network flow problem, and is thus solvable in strongly polynomial time. In contrast, the fundamental cut basis problem, where all cuts in the basis are obtained by deleting an edge, each from a spanning tree T, is shown to be NP-hard. In this proof, we also show that a tree which induces the minimum fundamental cycle basis is also an optimal solution for the minimum fundamental cut basis problem in unweighted graphs.We present heuristics, integer programming formulations and summarize first experiences with numerical tests.  相似文献   

14.
In this paper we consider the problem of minimizing number of tardy jobs on a single batch processing machine. The batch processing machine is capable of processing up to B jobs simultaneously as a batch. We are given a set of n jobs which can be partitioned into m incompatible families such that the processing times of all jobs belonging to the same family are equal and jobs of different families cannot be processed together. We show that this problem is NP-hard and present a dynamic programming algorithm which has polynomial time complexity when the number of job families and the batch machine capacity are fixed. We also show that when the jobs of a family have a common due date the problem can be solved by a pseudo-polynomial time procedure.  相似文献   

15.
We study a problem of optimal bandwidth allocation in the elastic optical networks technology, where usable frequency intervals are of variable width. In this setting, each lightpath has a lower and upper bound on the width of its frequency interval, as well as an associated profit, and we seek a bandwidth assignment that maximizes the total profit. This problem is known to be NP-complete. We strengthen this result by showing that, in fact, the problem is inapproximable within any constant ratio even on a path network. We further derive NP-hardness results and present approximation algorithms for several special cases of the path and ring networks, which are of practical interest. Finally, while in general our problem is hard to approximate, we show that an optimal solution can be obtained by allowing resource augmentation. Some of our results resolve open problems posed by Shalom et al. (2013) [28]. Our study has applications also in real-time scheduling.  相似文献   

16.
In this work, we introduce multi-interdictor games, which model interactions among multiple interdictors with differing objectives operating on a common network. As a starting point, we focus on shortest path multi-interdictor (SPMI) games, where multiple interdictors try to increase the shortest path lengths of their own adversaries attempting to traverse a common network. We first establish results regarding the existence of equilibria for SPMI games under both discrete and continuous interdiction strategies. To compute such an equilibrium, we present a reformulation of the SPMI game, which leads to a generalized Nash equilibrium problem (GNEP) with non-shared constraints. While such a problem is computationally challenging in general, we show that under continuous interdiction actions, an SPMI game can be formulated as a linear complementarity problem and solved by Lemke’s algorithm. In addition, we present decentralized heuristic algorithms based on best response dynamics for games under both continuous and discrete interdiction strategies. Finally, we establish theoretical lower bounds on the worst-case efficiency loss of equilibria in SPMI games, with such loss caused by the lack of coordination among noncooperative interdictors, and use the decentralized algorithms to numerically study the average-case efficiency loss.  相似文献   

17.
《Journal of Complexity》1988,4(3):177-192
We formalize a notion of loading information into connectionist networks that characterizes the training of feed-forward neural networks. This problem is NP-complete, so we look for tractable subcases of the problem by placing constraints on the network architecture. The focus of these constraints is on various families of “shallow” architectures which are defined to have bounded depth and un-bounded width. We introduce a perspective on shallow networks, called the Support Cone Interaction (SCI) graph, which is helpful in distinguishing tractable from intractable subcases: When the SCI graph is a tree or is of limited bandwidth, loading can be accomplished in polynomial time; when its bandwidth is not limited we find the problem NP-complete even if the SCI graph is a simple 2-dimensional planar grid.  相似文献   

18.
A standard reconstruction problem is how to discover a compact set from a noisy point cloud that approximates it. A finite point cloud is a compact set. This paper proves a reconstruction theorem which gives a sufficient condition, as a bound on the Hausdorff distance between two compact sets, for when certain offsets of these two sets are homotopic in terms of the absence of μ-critical points in an annular region. We reduce the problem of reconstructing a subset from a point cloud to the existence of a deformation retraction from the offset of the subset to the subset itself. The ambient space can be any Riemannian manifold but we focus on ambient manifolds which have nowhere negative curvature (this includes Euclidean space). We get an improvement on previous bounds for the case where the ambient space is Euclidean whenever μ≤0.945 (μ∈(0,1) by definition). In the process, we prove stability theorems for μ-critical points when the ambient space is a manifold.  相似文献   

19.
The Team Orienteering Problem (TOP) is a known NP-hard problem that typically arises in vehicle routing and production scheduling contexts. In this paper we introduce a new solution method to solve the TOP with hard Time Window constraints (TOPTW). We propose a Variable Neighborhood Search (VNS) procedure based on the idea of exploring, most of the time, granular instead of complete neighborhoods in order to improve the algorithm’s efficiency without loosing effectiveness. The method provides a general way to deal with granularity for those routing problems based on profits and complicated by time constraints. Extensive computational results are reported on standard benchmark instances. Performance of the proposed algorithm is compared to optimal solution values, when available, or to best known solution values obtained by state-of-the-art algorithms. The method comes out to be, on average, quite effective allowing to improve the best know values for 25 test instances.  相似文献   

20.
Discrete sensor placement problems in distribution networks   总被引:1,自引:0,他引:1  
We consider the problem of placing sensors in a network to detect and identify thesource of any contamination. We consider two variants of this problem:
(1) sensor-constrained: we are allowed a fixed number of sensors and want to minimize contaminationdetection time; and

(2) time-constrained: we must detect contamination within a given time limit and want to minimize the number of sensors required.

Our main results are as follows. First, we give a necessary and sufficient condition for source identification.Second, we show that the sensor and time constrained versions of the problem are polynomially equivalent. Finally, we show that the sensor-constrained version of the problem is polynomially equivalent to the asymmetric k-center problem and that the time-constrained version of the problem is polynomially equivalent to the dominating set problem.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号